Browse > Article
http://dx.doi.org/10.14478/ace.2020.1002

Recent Progress for Hydrogen Production from Biogas and Its Effective Applications  

Song, Hyoungwoon (Plant Process Development Center, Institute for Advanced Engineering)
Jung, Hee Suk (Plant Process Development Center, Institute for Advanced Engineering)
Uhm, Sunghyun (Plant Process Development Center, Institute for Advanced Engineering)
Publication Information
Applied Chemistry for Engineering / v.31, no.1, 2020 , pp. 1-6 More about this Journal
Abstract
Hydrogen production from biogas has received consistent attention due to the great potential to solve simultaneously the issues of energy demands and environmental problems. Practically, biomethane produced by purification/upgrading of biogas can be a good alternative to the natural gas which is a main reactant for a steam methane reforming process. Judging from the economic and environmental impacts, however, the steam biogas and dry reforming are considered to be more effective routes for hydrogen production because both processes do not require the carbon dioxide elimination step. Herein, we highlight recent studies of hydrogen production via reforming processes using biogas and effective applications for earlier commercialization.
Keywords
Hydrogen production; Biogas; Biomethane; Steam reforming; Dry reforming;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Sun, H. Li, J. Yan, L. Liu, Z. Yu, and X. Yu, Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation, Renew. Sustain. Energy Rev., 51, 521-532 (2015).   DOI
2 Y. Gao, J. Jiang, Y. Meng, F. Yan, and A. Aihemaiti, A review of recent developments in hydrogen production via biogas dry reforming, Energy Convers. Manage., 171, 133-155 (2018).   DOI
3 L. B. Braga, J. L. Silveira, M. E. Silva, C. E. Tuna, E. B. Machin, and D. T. Pedroso, Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis, Renew. Sustain. Energy Rev., 28, 166-173 (2013).   DOI
4 S. Arora and R. Prasad, An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts, RSC Adv., 6, 108668-108688 (2016).   DOI
5 P. S. Roy, J. Song, K. Kim, C. S. Park, and A. S. K. Raju, $CO_2$ conversion to syngas through the steam-biogas reforming process, J. $CO_2$ Util., 25, 275-282 (2018).
6 D. P. Minh, T. J. Siang, D-V. N. Vo, T. S. Phan, C. Ridart, A. Nziho, and D. Grouset, Hydrogen production from biogas reforming: An overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane, Hydrogen Supply Chains, Chapter 4, 111-166 (2018).
7 S. Wang, G. Q. Lu, and G. J. Millar, Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art, Energy Fuels, 10, 896-904 (1996).   DOI
8 O. W. Awe, Y. Zhao, A. Nzihou, D. P. Minh, and N. Lyczko, A review of biogas utilisation, purification and upgrading technologies, Waste Biomass Valori., 8, 267-283 (2017).   DOI
9 G. Saur and A. Milbrandt, Renewable hydrogen potential from biogas in the United States, NREL, TP-5400-60283 (2014).
10 R. Hakawati, B. M. Smyth, G. McCullough, F. D. Rosa, and D. Rooney, What is the most energy efficient route for biogas utilization: Heat, electricity or transport?, Appl. Energy, 206, 1076-1087 (2017).   DOI
11 M. Usman, W. M. A. W. Daud, and H. F. Abbas, Dry reforming of methane: Influence of process parameters - A review, Renew. Sust. Energy Rev., 45, 710-744 (2015).   DOI
12 M. Seo, S. Y. Kim, Y. D. Kim, E. D. Park, and S. Uhm, Highly stable barium zirconate supported nickel oxide catalyst for dry reforming of methane: From powders toward shaped catalysts, Int. J. Hydrog. Energy, 43, 11355-11362 (2018).   DOI
13 J. Yun, K. Cho, Y. D. Lee, and S. Yu, Four different configurations of a 5 kW class shell-and-tube methane steam reformer with a low-temperature heat source, Int. J. Hydrog. Energy, 43, 4546-4562 (2018).   DOI
14 G. D. Marcoberardino, D. Vitali, F. Spinelli, M. Binotti, and G. Manzolini, Green hydrogen production from raw biogas: A techno-economic investigation of conventional processes using pressure swing adsorption unit, Processes, 6, 19 (2018).   DOI
15 A. Settar, S. Abboudi, B. Madani, and R. Nebbali, Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer, Heat Mass Transf., 54, 385-391 (2018).   DOI
16 C. Figueres, C. Le Quere, A. Mahindra, O. Bate, G. Whiteman, G. Peters, and D. Guan, Emissions are still rising: Ramp up the cuts, Nature, 564, 27-30 (2018).   DOI
17 C. Le Quere, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck, J. Pongratz, P. Pickers, J. I. Korsbakken, G. P. Peters, and J. G. Canadell, Global carbon budget 2018, Earth Syst. Sci. Data, 10, 2141-2194 (2018).   DOI
18 V. Sumbramani, A. Basile, and N. T. Verizoglu, Compendium of Hydrogen Energy: Hydrgoen Production and Purification, Elsevier Science & Technology: Amsterdam, The Netherlands (2015).
19 I. U. Khan, M. H. D. Othman, H. Hashim H, T. Matsuura, A. F. Ismail, M. R. D. Arzhandi, and I. W. Azelee, Biogas as a renewable energy fuel-a review of biogas upgrading, utilization and storage, Energy Convers. Manage., 150, 277-294 (2017).   DOI
20 A. I. Adnan, M. Y. Ong, S. Nomanbhay, K. W. Chew, and P. L. Show, Technologies for biogas upgrading to biomethane: A Review, Bioengineering, 6, 92 (2019).   DOI