• Title/Summary/Keyword: 건설성능

Search Result 2,122, Processing Time 0.031 seconds

Estimation of Appropriate Infiltration Rate and the Effects of the Flowerbed Type Infiltration System (화단형 침투시설의 단위설계침투량 산정 및 효과분석)

  • Han, Young-Hae;Lee, Tae-Goo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.140-147
    • /
    • 2012
  • This study developed a flowerbed type infiltration system that could control the amount of runoff discharge under a certain level estimated its proper design infiltration rate, and analyzed the effects of its implementation. Analyzing the performance of infiltration system is the one of the essential processes that should be under review to predict its effects after implementation when a rainwater infiltration system is included in a district-based plan. To estimate the unit design infiltration rate of this system, the runoff decrease effect was analyzed by varying the unit infiltration rate of the system applied to the parking lot adjacent to the Korea Institute of Construction Technology laboratory building by using a water balance analysis program. After varying the unit design infiltration to $0.1{\sim}3m^3/m^2.day$ to analyze the variation in the rate of runoff, 80% of the runoff was infiltrated at $1.0m^3/m^2.day$, and the unit infiltration design rate at the time was 0.0416(m3/m2.hr). It was also found that the unit design infiltration rate obtained from a field infiltration test of the developed system was about $0.045m^3/hr$. Based on this study, it was possible that infiltration rate is estimated to consider the economic scale and environmental effect. It is significant to apply the spatial plan of rainwater infiltration system as green infrastructure.

Flexural Behavior of Reinforced Recycled Aggregate Concrete Beams (순환골재를 사용한 철근콘크리트 보의 휨거동 특성)

  • Song, Seon-Hwa;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.431-439
    • /
    • 2009
  • These days the amount of demolished concrete waste has been increasing due to reconstruction and redevelopment of aged buildings. So the use of recycled aggregates is recommended to solve environmental problems. Some investigations have been carried out to study the flexural behavior of reinforced concrete beams with recycled aggregates. But these have some limitation due to the use of low quality recycled aggregates and small-scale specimens in the laboratory. The purpose of this experimental study is to evaluate the flexural behavior of simply supported RC beams subjected to four-point monotonic loading and made with recycled aggregates. Seven full-scale RC beams were manufactured with different replacement level of recycled aggregates. The main parameters of the study are combination of aggregates. From the test results, the flexural behavior of the beam is described in terms of crack patterns and failure modes. And the flexural strength of RC beam with different types of recycled coarse aggregates and recycled fine aggregates is compared with the provision of KCI code.

A Study on the Development of a Dry P0SCO E&C Fire Board Method with High Fire Resistance (건식화 P0SCO E&C Fire Board 공법 개발에 관한 연구)

  • Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.721-724
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire.resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire resistant boards. The results of fire resistance test showed an increase in thermal durability and thermal strain. It is believed that inorganic fiber reduces thermal strain, and lowers heat insulation performance by 15% or less. This suggests that heat insulation performance was improved by the change in the inner composition of PF board resulting from the adjustment of Al:Si mol ratio, high temperature molding, and dry curing. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116$^\circ$C in 15mm, 103.8$^\circ$C in 20mm, and 94$^\circ$C in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3 hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages (GGBFS를 혼입한 콘크리트의 재령에 따른 강도 및 염소이온 침투 저항성)

  • Park, Jae-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2017
  • Concrete is a durable and cost-benefit construction material, however performance degradation occurs due to steel corrosion exposed to chloride attack. Penetration of chloride ion usually decreases due to hydrates formation and reduction of pores, and the reduced chloride behavior is considered through decreasing diffusion coefficient with time. In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.

Flexural Behavior of RC Beams Strengthened with Steel Strand and Carbon Fiber Sheet (강연선 및 탄소섬유쉬트로 보강된 철근 콘크리트 보의 휨거동 특성)

  • 양동석;박선규;이용학
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. Therefore, considerable efforts are still being made to develop new construction materials. Rehabilitation of damaged RC structures occasionally requires the removal and replacement of concrete in the tension zone of the structural members. Typical situation where the tension zone repair is necessary is when the concrete in the tension zone in beams or slabs has spalled off as a result of corrosion in the bottom reinforcing bars or due to extensive fire. The rehabilitation of such conditions normally involves the removal of the concrete beyond the reinforcement bars, cleaning or replacing the tensile bars and reinstatement of concrete to cover the steel bars the original shape and size. This study focused on the flexural behavior of reinforced concrete beams strengthened by steel strand and carbon fiber sheet in the tension zone. The properties of beams are 15$\times$25 cm rectangular and over a 200cm span. Test parameters in this experimental study were strengthening methods, jacking volume, the number of sheet. We investigated the flexural behavior of simply supported RC beams which are strengthened with the carbon fiber sheet, monotonic loads. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated beams.

Structural Performance Evaluation of Steel Fiber-Reinforced Concrete Beams with Recycled Coarse Aggregates (순환골재를 사용한 강섬유보강 콘크리트보의 구조 성능 평가)

  • Shin, Jae-Lin;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.-K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.215-227
    • /
    • 2015
  • In this study, twenty four steel-fiber reinforced concrete (SFRC) beams using recycled coarse aggregates (RCA) were manufactured to examine the shear behavior of SFRC and to determine the beams' ultimate shear strengths. The RCA replacement ratio was fixed at 30%. The variables studied in this investigation are: (1) shear span-to-depth ratios (a/d) of 2, 3 and 4; (2) longitudinal reinforcement ratio (${\rho}$) of 0.008 and 0.0127; and (3) steel fiber volume fractions ($V_f$) of 0, 0.5, 0.75 and 1%. Test results were analyzed and then compared with the findings and proposals of various other researchers. Based on the test results, the more steel fiber volume fraction is increased, the large crack resistance and shear strength are exhibited. Most of the experimental data is higher than the theoretical value. Therefore, steel-fiber reinforced concrete beams using recycled coarse aggregates are suggested to be applied for building structures.

The Properties of Strength and Durability of Concrete Using Early-Strength Poly Carbonic Acid Admixture (폴리카르본산계 조강혼화제 혼합 콘크리트의 강도 및 내구 특성)

  • Lee, Sang-Ho;Hong, Kyung-Sun;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.217-224
    • /
    • 2007
  • This study reports the properties of high early strength & durability of concrete using PC admixture. To apply these data to construction site, we did the lab tests. The target of this study is to accomplish early strength of concrete (5.0 Mpa/18 hr), and we did the durability tests such as length change test, chloride ion penetration test, fleeting and thawing test, adiabatic test, etc. And we tested the porperties of concrete by the different factors, such as the type of admixtures, curing temperature, the amount of binder, etc. Through the test of concrete using the different type of admixture, PC type was more excellent than PNS type admixture. As a result, we made a concrete of high early strength concrete, and excellent durable concrete. According to these tests, we concluded that we can apply this type of PC admixture to the civil & construction site, and we can reduce the term of works and finally we will accomplish the economical construction.

Evaluation methods of shotcrete lining stresses considering steel rib capacities by two-dimensional numerical analysis (이차원 수치해석에 의한 강지보 성능을 고려한 숏크리트 라이닝의 부재력 평가 방법)

  • Ha, Tae-Wook;Kim, Dae-Young;Shin, Young-Wan;Yang, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.269-282
    • /
    • 2008
  • In general, the effects of steel ribs are not considered in the numerical analysis of tunnel design. However, attempts have been increased recently to consider these effects in the analysis of shallow tunnels in soft ground, based on the fact that the steel ribs embedded in the shotcrete take a role to support some portion of the redistributed load due to excavation. In such analyses, the steel ribs can be considered in four different methods: (1) a conventional method where the steel ribs are not considered, (2) a method using the equivalent composite cross section in which the bending moment of shotcrete is not considered, (3) a method using the equivalent composite cross section in which both the compressive stress and the bending moment for the shotcrete and steel rib are considered, and (4) a method using beam elements for the shotcrete and the steel rib, respectively. These methods are adopted in the numerical analysis using FLAC 2D to investigate stresses of both the shotcrete and the steel rib. The overall results show that the analyses are more practical and economical when the effects of steel rib are considered fer the methods (2), (3), and (4). Since the results of those analyses considering steel rib capacity may be different according to the ground condition, it will be necessary to consider the appropriate method among them in accordance with design conditions.

  • PDF

Shape Optimum Design of Pultruded FRP Bridge Decks (인발성형된 FRP 바닥판의 형상 최적설계)

  • 조효남;최영민;김희성;김형열;이종순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2004
  • Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.

Large-scale 3D SSI Analysis using KIESSI-3D Program (KIESSI-3D 프로그램을 이용한 대형 3차원 SSI 해석)

  • Lee, Eun-Haeng;Kim, Jae-Min;Seo, Choon-Gyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.439-445
    • /
    • 2013
  • The soil-structure interaction(SSI) effect should be considered to accurately assess the seismic response of structure constructed on soft soil site other than the hard bedrock. Recently, the demand of SSI analysis has increased due to strengthening of the regulatory guidelines of nuclear power plant such as the USNRC SRP 3.7.2. In this study an accuracy and running time of the KIESSI-3D program for large-scale 3D SSI analysis were investigated. The seismic SSI analysis using the KIESSI-3D program was performed for several examples of large-scale three-dimensional soil-structure interaction system. The analysis results were compared with those of the ACS/SASSI program. Good agreements in transfer functions at selected locations showd that KIESSI-3D yields accurate solution for large-scale SSI problem. Moreover, it was found that running speed of the KIESSI-3D for large-scale 3D SSI analysis is much faster than that of the ACS/SASSI about 30~2000 times.