• Title/Summary/Keyword: 거더 응력

Search Result 161, Processing Time 0.026 seconds

An Analytical Study of Flange Local Buckling of Horizontally Curved I-Girders for Estimate Resonable Stress Gradient (합리적 응력경도 산정을 위한 수평 곡선 I-형 거더의 플랜지 국부좌굴의 해석적 연구)

  • Kim, Hee-Soo;Lee, Kee-Sei;Lee, Jeong-Hwa;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6504-6510
    • /
    • 2015
  • Horizontally curved I-girders are subjected to not only bending moments but also torsional moments. The torsional moment of the plate girder is addition of St. Venant torsion and non-uniform torsion. In the flange of I-shaped plate girder, a kind of open-section, the normal stresses is not distributed uniformly due to the non-uniform torsion. Because of that, one of compression flange tip can be yielded faster than the flange of general straight girder. In other words, the flange local buckling strength is decreased when the girder has initial curvature. In this paper, the numerical analysis is conducted to investigate the average stresses in flange for curved girders. The subtended angle and slenderness ratio are taken as parameters.

Comparison of Reliability of PSSC Girder Bridge for Different Limit States (PSSC 거더 교량의 한계상태별 신뢰도 비교)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.171-180
    • /
    • 2007
  • Reliability analysis of prestressed steel and concrete(PSSC) girders is conducted for deflection, stress and moment strength limit state. PSSC girder has strong advantages in terms of construction cost and vertical clearance for the span length of over 40 meters. In this paper, example PSSC girders with different span lengths, section dimensions and design stress levels are designed and analyzed to calculate the midspan deflection, stress and the section moment strength. Deflection limit state, stress limit state and strength limit state functions are assumed and the reliability indexes are obtained by Monte-Carlo simulation and Rackwitz-Fiessler procedure. The results show that the reliability of PSSC girder for deflection limit state is appropriately higher than the stress limit state and the reliability for moment strength is significantly conservative.

Development of a Prestressed Plate Girder Forming Hybrid Sections of Hot-rolled H Beam and High-Strength Steel Plates (H형강과 고강도 강판으로 복합단면을 구성하는 프리스트레스트 플레이트거더의 개발)

  • Kyung, Yong Soo;Ahn, Byung Kuk;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.637-648
    • /
    • 2005
  • Innovative prestressed steel plate girders were presented in this study. Hot-rolled H beams were loaded first, then relatively high-strengthsteel plates were welded on the top and bottom flanges of preloaded H beams. Finally, high prestressed plate (HiPP) girder was manufactured by simply releasing prestresses of rolled beams. To verify prestress distributions induced in this girder, the experimental study was conducted and some guidelines to manufacture these girders effectively were addressed. In addition, methods to determine the allowable bending stress of HiPP girders and to check welding stresses were addressed for design of temporary bridges. The efficiency and effectiveness of the present girder were demonstrated through design examples of temporary bridges adapting the prestress-induced girder or the plate girder of the same section without prestresses. As a result, it has been found to be possible that the span length of HiPP girders for temporary bridges is longer than that of girders without prestresses.

A Study on Torsional Stress ratio and Torsional ratio of Curved Girder Bridge by Transfer Matrix Method (전달행렬법에 의한 곡선거더교의 비틀림 응력비와 비틀림 정수비에 관한 연구)

  • Lee, Wong-Hong;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.173-182
    • /
    • 2006
  • In the design of curved girder bridges, the engineer is faced with a complex stress situatiorl. since these types of mutiple-I girder. mono-box girder and twin-box girder are subjected to both bending and torsional force. In general, the torsional forces consist of two part, St. venant's and warping. Thus the procedure for determining the induced stresses in a curved girder is difficult. The transfer matrix method is extensively used for the structural analysis because its merit in the theoretical background and applicability. The technique is attractive for implementation on a numerical solution by means of a computer program coded in Fortran language with a few elements. To demonstrate this fact. it gives good results which compare well with finite difference method. Therefore, in this paper, to clarify the range where the torsional warping stress can be approximated by pure torsional analyzed a critical value of relationships between the torsional stress ratio and torsional ratio.

Stiffened Effect of Knee Brace of Cross-Beam in Steel Box-girder Bridges (강박스거더교 가로보 니브레이스(Knee Brace)의 보강효과)

  • Gil, Heung Bae;Jang, Gab Chul;Kang, Sang Gyu;Lee, Il Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.227-234
    • /
    • 2009
  • Recently, a knee brace is usually installed in connection between cross-beam and main-girder of steel box-girder bridges. The knee brace is installed as a structural stiffener and mainly aims to relieve stress at joints and to prevent main-girder from lateral deformation. However, research on the knee brace is insufficient to obviously evaluate the necessity. The stiffened effect of knee brace is determined by using finite element analyses. Stress distribution, stress level of members and deflection of the cross-beam are evaluated by parametric FE analysis for the installation of knee brace and the depth ratio of cross-beam/steel box girder. It is seen from comparison of numerical analysis results that the knee brace installed in cross-beam of steel boxgirders bridges is not efficient as a structural stiffener with respect to stress relief and stiffened effect.

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

Behavior and Improvement of Construction Crack occurred on Anchorage of PSC-edge Girder Rahmen Bridge (PSC-Edge 거더 라멘교의 정착부에 발생한 시공 균열 거동과 개선)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.569-576
    • /
    • 2019
  • PSC-Edge Rahmen Bridge makes low thickness and long span by introducing prestressed force to the edge girder and reducing positive moment. In the bridge, diagonal tension cracks occurred in the direction of $45^{\circ}$ to outer side of the girder after the temporary bent supported on the lower part of the upper slab and the secondary strand is tensioned on the girder. Researches on stress distribution and burst crack behavior of pre-stress anchorage has been conducted, it is difficult to analyze an obvious cause due to difference between actual shape and boundary condition. This study performed 3D frame analysis with additional boundary condition of temporary bent, the maximum compression stress occurred in the girder and there was a limit to identify the cause. It performed 3D Solid analysis with LUSAS 16.1 and the maximum principal tensile stress occurred at the boundary between the girder and the slab. As analyzing required reinforcement quantity at obtuse angle of the girder with the maximum principal tensile stress and directional cosine, reinforcement quantity was insufficient. Additional bridges have increased reinforcement quantity and extended area and crack was not occurred. It is expected that cracks on the girder during construction could be controlled by applying the proposed method to PSC-Edge Rahmen Bridge.

Transverse Stress of Slabs due tp Longitudinal Prestressing in Prestressed Concrete Box Girders (프리스트레스트 콘크리트 박스 거더의 종방향 프리스트레싱에 의한 슬래브의 횡방향 응력)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.679-688
    • /
    • 2003
  • For box girders in which the longitudinal tendon is profiled in the inclined webs, longitudinal prestressing force will induce transverse effects as well as longitudinal ones. In this paper, the method to estimate transverse effects induced by longitudinal prestressing is proposed. The concept of transverse equivalent loading which is calculated through longitudinal prestressing analysis is developed. The transverse stress in slabs of box girders due to longitudinal prestressing are investigated. The comparison of numerical results of the proposed method and those of folded plate method represents that the method is reasonable. Numerical analyses are carried out depending on the parameters such as web inclination and ratio of girder length to tendon eccentricity. Analysis results show that when only prestressing are considered the magnitude of transverse stress in slabs of box girder is not so large. However, if the other stresses due to dead and live load et al. are superposed on these stresses, it may be that the longitudinal prestressing effects are significant.

Design of Longitudinal prestress of precast decks in twin-girder continuous composite bridges (강박스거더 교량의 프레임 형식 중간다이아프램의 설계)

  • Yoon, Dong Yong;An, Sung Hyun;Lee, Sung Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.515-524
    • /
    • 2006
  • Cross-sectional distortions take place when steel box girders a re subjected to torsional moment, as a consequence of which distortional warping stresses are necessarily developed. Additional normal stresses due to the distortion are should be included at the design stage. The relative magnitude with respect to the maximum bending stress are kept less than the specific values, i.e., at 5~10%, by properly spaced intermediate diaphragms that could prevent the distortional deformation of the box girder. However, current design equations for the stiffness of intermediate diaphragms were derived based on BEF. In this study, the area required by the intermediate diaphragm members are investigated through three-dimensional finite element analyses. The results of the analyses indicate that the current equations give to conservative values for the intermediate diaphragm of box girder bridges. Finally, an improved equation for the area of the intermediate diaphragm is derived from a regression analysis from the finite element analysis results.

Ultimate Behavior of Plate Girders with High Strength Steel in Combined Bending and Shear (휨과 전단을 받는 고강도강 플레이트거더의 극한거동)

  • Kim, Jong-Min;Hwang, Min-Oh;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • 국내에서는 플레이트거더의 휨 강도 및 전단 강도를 허용응력설계법에 기반한 도로교설계기준(2005)에 근거하여 규정하고 있으며, 국외의 경우 하중저항계수설계법에 근간을 둔 AISC(2005) 등의 규정을 통해 산정하고 있다. 최근에는 인장강도 800MPa 급의 강재가 생산되고 있으나 국내 설계기준에서는 아직까지 상기 인장강도를 갖는 고강도강에 대한 설계기준은 마련되지 않고 있다. 본 연구에서는 휨과 전단이 동시에 작용하는 고강도강 적용 플레이트거더의 극한거동 해석을 통해 국내기준의 적용성을 판단하고, 국외기준인 AISC(2005)와 비교하여 나타내어 허용응력설계법에 근거한 국내기준의 강도산정법의 한계점에 대해 고찰하였다.

  • PDF