• 제목/요약/키워드: 객체 인식

검색결과 1,268건 처리시간 0.036초

실시간 다중 객체인식 알고리즘 구현 (Implementation of Real time based Multi-object recognition algorithm)

  • 박태룡
    • 전기전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.51-56
    • /
    • 2013
  • 본 논문에서는 ORB 알고리즘을 기반으로 하는 다중객체 인식 구현을 위하여 개선된 매칭 기법을 제안한다. 객체 인식 알고리즘으로 잘 알려진 SURF 알고리즘은 객체인식에 강인하지만 연산량이 많아 실시간으로 구현하기에는 어려운 단점이 있다. 따라서 ORB 알고리즘을 활용하여 객체를 인식하였고, 실시간 다중객체인식을 위해 매칭 단계를 개선하여 속도를 약 70% 향상 시켰다.

문자 인식 향상을 위한 회전 정렬 알고리즘에 관한 연구 (A Study on Rotational Alignment Algorithm for Improving Character Recognition)

  • 진고환
    • 한국융합학회논문지
    • /
    • 제10권11호
    • /
    • pp.79-84
    • /
    • 2019
  • 영상을 기반으로 하는 기술들의 지속적인 발전으로 다양한 분야에서 활용되고 있고, 카메라를 통하여 획득한 영상의 객체를 분석하고 판별하는 비전 시스템의 기술 수요가 급속하게 증가하고 있다. 비전 시스템의 핵심 기술인 영상처리는 반도체 생산 분야의 불량 검사, 타이어 표면의 숫자 및 심볼과 같은 객체 인식 검사 등에 사용되고 있고, 자동차 번호판 인식 등의 연구가 계속하여 이루어지고 있는 실정으로, 객체를 신속, 정확하게 인식할 필요가 있다. 본 논문에서는 곡면과 같은 곳에 마킹되어 있는 숫자나 심볼과 같이 기울어진 객체를 인식하기 위하여 입력된 영상 이미지의 객체 기울기에 대한 각도 값을 확인하여 객체의 회전 정렬을 통한 인식 모델을 제안한다. 제안 모델은 컨투어 알고리즘을 기반으로 객체 영역을 추출하고, 객체의 각도를 산출한 후, 회전 정렬된 이미지에 대한 객체 인식을 진행할 수 있는 모델이다. 향후 연구에서는 기계학습을 통한 탬플릿 매칭 연구가 필요하다.

독립 객체의 이벤트 인식을 통한 긴급 상황 시나리오 해석 (Emergency Scenarios Interpretation through Event Recognition of Independent Objects)

  • 김영환;김민준;최창규;김승호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.494-499
    • /
    • 2007
  • 본 논문은 객체로부터 특징 벡터를 추출하고 각 객체의 행동 양식을 분석함으로써 객체의 현재 이벤트를 인식하고 확률 모델을 기반으로 한 긴급한 상황에서의 시나리오를 해석할 수 있는 방법을 제안한다. 기존의 연구에서는 시나리오 해석을 위한 이벤트 인식 방법을 사용하였기 때문에 적용되는 범위가 한정되어 있었다. 본 논문에서는 시나리오를 정의하고 인식된 객체의 이벤트를 바탕으로 미리 정의된 시나리오에 가장 근접하는 상황이 발생하는 것을 자동으로 해석할 수 있도록 한다. 이벤트 규칙, 이벤트 인식, 그리고 이벤트를 바탕으로 하는 긴급 상황 시나리오가 실내 또는 실외 환경에서 객체 추적만을 통해 얻을 수 없는 의미론적 정보를 제안된 방법을 통해 획득할 수 있다.

  • PDF

지능형 인식 및 추적 기술을 이용한 다중 객체 추적 시스템의 설계 (Design of Multi Object Tracking System Using Intelligent Recognition and Tracking Technology)

  • 오승훈;유성훈;김수찬;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1367-1368
    • /
    • 2015
  • 본 논문에서는 지능형 인식 기술인 RBFNNs 패턴분류기와 추적 기법인 Particle Filter를 융합한 다중 객체 추적 시스템을 설계한다. 여러 객체가 동시에 존재하는 상황에서 각각의 객체를 개별적으로 추적하기 위해 추적 기법에 인식 알고리즘을 추가하였다. 학습 데이터는 다양한 상황에서 정확한 인식 결과를 확인하기 위해 정면, 좌, 우측 데이터를 사용하였으며, 테스트 영상에서 검출된 얼굴 이미지를 테스트 데이터로 사용하였다. 추적 알고리즘인 Particle Filter를 사용하여 검출된 객체의 추적을 수행하며, 인식 결과를 바탕으로 다양한 객체에 대하여 개별적인 추적을 수행한다.

  • PDF

3차원 객체 인식을 위한 RGB-D 영상 특징점 추출 및 특징 기술자 생성 방법 (RGB-D Image Feature Point Extraction and Description Method for 3D Object Recognition)

  • 박노영;장영균;우운택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.448-450
    • /
    • 2012
  • 본 논문에서는 Kinect 방식의 RGB-D 영상센서를 사용하여, 깊이(Depth) 영상으로부터 3차원 객체의 기하정보를 표현하는 표면 정규 벡터(Surface Normal Vector)를 추출하고, 그 결과를 영상화하는 방법을 제안하며, 제안된 방법으로 생성된 영상으로부터 깊이 영상의 특징점 및 특징 기술자를 추출하여 3차원 객체 인식 성능을 향상시키는 방법을 제안한다. 또한 생성된 RGB-D 특징 기술자들을 객체 단위로 구분 가능한 코드북(CodeBook) 학습을 통한 인식방법을 제안하여 객체의 인식 성능을 높이는 방법을 제안한다. 제안하는 RGB-D 기반의 특징 추출 및 학습 방법은 텍스쳐 유무, 카메라 회전 및 이동 변화 등의 환경변화에 강건함을 실험적으로 증명하였으며, 이 방법은 Kinect 방식의 RGB-D 영상을 사용하는 3차원 객체/공간 인식 및 추적, 혹은 이를 응용하는 증강현실 시스템에 적용하여 사용될 수 있다.

YOLO 기반 딥러닝 객체 인식 무인계산대 개발에 관한 연구 (Implementation of An Unmanned Counter based on YOLO Deep Learning Object Recognition)

  • 박태백
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.776-778
    • /
    • 2022
  • 우리는 일상 속에서 다양한 결제시스템을 접할 수 있다. 그중 무인계산 시스템은 소비자가 구매부터 결제까지 스스로 하는 방식이다. 발전된 기술이 편리함을 제공하지만, 일부 소비자들은 오히려 사용에 어려움을 겪고 사람이 계산을 해주는 기존의 시스템을 선호하는 경우가 많다. 본 논문에서는 소형 IOT 기기와 딥러닝 객체 인식 시스템을 기반으로 한 무인계산대를 설계하고 개발하였다. 계산대의 모습을 구현하기 위해 아두이노 컨베이어 벨트를 이용하고 라즈베리 파이와 파이 카메라를 이용하여 객체 인식 환경을 구현하였다. 파이 카메라를 통해 영상을 인식하고 해당 영상을 실시간으로 전송하여 PC에서 YOLO를 통해 객체를 탐지한다. 이후 탐지된 객체는 소비자가 확인할 수 있도록 디스플레이에 시각화한다. 본 논문에서 제안한 딥러닝 객체 인식 무인계산 시스템은 공산품이 주를 이루는 무인 상점에 활용할 수 있다.

실사영상 기반 내비게이션을 위한 도로객체인식 (Road Object Recognition for Real Video based Navigation)

  • 박정호;조성익
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2007년도 GIS 공동춘계학술대회 논문집
    • /
    • pp.188-193
    • /
    • 2007
  • 본 논문에서는 실사영상을 기반으로 동작하는 내비게이션에서 핵심적인 역할을 담당하고 있는 모듈 가운데 하나인 도로객체인식 모듈의 기능에 대해서 살펴보고자 한다. 이 모듈은 기존의 맵 기반의 내비게이션에서 찾아볼 수 없는 부분이며, 실사 영상위에 차량의 경로를 안내하기 위해서는 이 모듈을 통해 다양한 도로객체를 인식해야 하는데, 주행차선인식, 주행차로인식 및 신호등 인식이 필요하며 경우에 따라서는 건물인식이 여기에 포함될 수 있다.

  • PDF

사용자 추적, 인식을 위한 영상인식 기술개발 동향

  • 김승훈;정일균;박창우;황정훈
    • 제어로봇시스템학회지
    • /
    • 제17권1호
    • /
    • pp.18-24
    • /
    • 2011
  • 영상인식기술은 지능로봇 또는 지능형 홈이 하나 또는 다수의 영상정보를 이용하여 일상 생활 환경에서 대상 객체의 유무, 객체의 식별, 객체의 형상 추출, 객체의 위치 파악등을 자동으로 수행하는 기술을 통칭한다. 이러한 영상인식기술은 지능형 로봇과 지능형 홈, 지능형 안전시스템 등 앞으로 생활환경을 급속히 변화시킬 것으로 예상되는 첨단기기에서 가장 중요한 핵심기술이다.

실시간 다중 객체 인식 및 추적 기법 (Real-time Multi-Objects Recognition and Tracking Scheme)

  • 김대훈;노승민;황인준
    • 한국항행학회논문지
    • /
    • 제16권2호
    • /
    • pp.386-393
    • /
    • 2012
  • 본 논문에서는 객체의 관심점(interest points)에 대한 지역 특징 기술자를 이용하여 이미지나 동영상에서 다수의 관심 객체를 효과적으로 인식하고 추적하기 위한 기법을 제안한다. 이를 위해 먼저 대상이 되는 객체를 포함하는 다양한 이미지를 수집하고 SURF 알고리즘을 적용하여 객체의 관심점과 그들에 대한 지역 특징 기술자를 생성한다. 지역 특징에 대한 통계적인 분석을 통하여 관심점들 중에서 해당 객체의 특성을 가장 잘 표현하는 대표점(representative points)을 선택하고 이를 바탕으로 이미지에 존재하는 객체를 인식한다. 또한, 지역 특징 기술자의 정합을 응용하여 각 SURF 지점들의 움직임 벡터를 생성하고 이를 기반으로 실시간으로 객체를 추적한다. 제안하는 기법은 모든 객체를 독립적으로 다루기 때문에, 여러 개의 객체를 동시에 인식하고 추적할 수 있다. 다양한 실험을 통해, 동영상에서 객체의 존재 여부 및 종류를 신속하게 판별하고 관심 객체의 추적을 효과적으로 수행할 수 있음을 보인다.

객체 영상의 3D 모델링을 위한 특징점 인식에 관한 연구 (A Study on Feature Point Recognition for 3D Modeling of object image)

  • 정윤수;이해원;김진석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 추계종합학술대회
    • /
    • pp.517-521
    • /
    • 2000
  • 본 논문에서는 영상 처리 방법을 이용하여 주어진 객체의 실세계 좌표를 나타내는 특징점을 인식하는 한 방법을 제안한다. 제안된 방법에서는 육면체 형상의 객체를 대상으로 하며, 이러한 객체 영상의 주요한 특징점은 육면체를 결정짓는 꼭지점들로 이루어진다. 제안된 방법은 CCD 카메라로부터 영상을 획득하는 영상 획득 모듈, 획득된 영상에 대하여 관심 영역을 찾는 영상 분할 모듈, 분할된 관심 영역에 대하여 sobel operator등을 이용하여 경계 정보를 검출하는 영상 처리 모듈, 그리고 세선화, line fitting과정을 통하여 직선 벡터들을 검출한 후에 객체의 주요한 특징점을 인식하는 모듈로 구성된다.

  • PDF