• 제목/요약/키워드: 객체 영상 인식

검색결과 588건 처리시간 0.035초

모바일 환경 응용을 위한 코너 특징점 기반의 회전 객체 검출 (Rotated object recognition based on corner feature points in mobile environment)

  • 김대환;박금춘;김신덕
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제48차 하계학술발표논문집 21권2호
    • /
    • pp.23-26
    • /
    • 2013
  • 최근 모바일 장치의 영상 데이터 처리 능력 확대와 더불어 사용자가 요구하는 다양한 영상 데이터의 효율적인 인식 기술 연구가 요구되어지고 있다. 모바일 환경은 고성능 PC 환경과 달리 저사양의 CPU와 메모리를 탑재하고 있어, 영상에서 원하는 객체를 인식하기 위한 기존의 방법론으로는 사용자 요구를 실시간으로 충족하기 어려운 부분이 존재한다. 이에 모바일 환경에 맞는 객체 인식 방법론의 개발이 요구된다. 모바일 환경에서 실시간으로 객체 인식을 하기 위하여, 본 논문에서는 객체 코너 정보를 이용한 Harris corner detector[1]로부터 객체의 특징점을 추출하고, 이를 바탕으로 하여 영상내의 객체 정보 인식 방법을 제안한다. 제안하는 방법에 의해, 입력 영상에서 객체의 코너 정보를 빠르게 추출, 기존 특징점과의 비교를 통하여 영상 내부의 객체 인식을 진행한다. 일반적으로, 회전된 특징점 객체의 정보는 객체의 회전 정도에 따라 코너 픽셀 색상 정보의 변화가 발생하게 된다. 특징점의 색상값은 객체의 회전 정도에 영향을 받아 주변의 픽셀값과 혼합되는 특성이 존재한다. 본 논문에서는 회전 변경된 픽셀 색상값의 영향을 분석하여, 회전된 객체의 특징점 추출 및 객체 검출에 반영하도록 하여, 영상 내부의 회전된 객체 검출의 수행에 효과적으로 이용될 수 있도록 한다. 특징점의 코너 정보를 이용하여 객체를 인식하는 것은, 객체의 인식률은 다소 감소하더라도 모바일 환경에서 계산량의 감소를 통한 실시간 활용이 가능하도록 한다. 이러한 특성은 저성능 CPU와 메모리에서도 회전된 객체의 인식을 수행할 수 있게 하는데 상당히 효과적이다.

  • PDF

내부 객체 정보를 이용한 온톨로지 기반의 객체 영상 인식 (Ontology-based Object-Image Recognition by Using Information on Inner-Objects)

  • 이인근;서석태;석지권;권순학
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.760-765
    • /
    • 2009
  • 객체 영상에서 색, 모양과 같은 특징은 객체의 특성을 명확하게 표현하지 못한다. 따라서 제한된 특징 정보는 객체 영상인식의 애매성을 야기한다. 최근에는 객체 인식에서의 애매성을 줄이기 위해 지식베이스에 기반한 영상의 인식에 관한 연구가 진행되고 있다. 그러나 영상은 수치적 정보로 표현되고 지식베이스는 개념적 정보로 표현되어 영상과 지식 베이스의 결합이 쉽지 않다. 본 논문에서는 영상과 지식베이스의 정보 표현의 차이를 줄이기 위해 온톨로지를 이용하여 지식베이스를 구성한다. 그리고 내부 객체 정보를 이용하여 객체 영상 인식 과정에서의 애매성을 줄이는 객체 영상 인식 방법을 제안한다. 또한, 과일 영역에서의 객체 영상 인식 실험을 통해 제안한 방법의 효용성을 확인한다.

360° 스트리밍 영상에서의 객체 인식 연구 (Object Recognition in 360° Streaming Video)

  • 윤정록;전성국;김회민;김운용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.317-318
    • /
    • 2019
  • 가상/증강현실로 대표되는 공간정보 기반 실감형 콘텐츠에 대한 관심이 증대되면서 객체인식 등의 지능형 공간인지 기술에 대한 연구가 활발히 진행되고 있다. 특히 HMD등의 영상 시각화 장치의 발달 및 5G 통신기술의 출현으로 인해 실시간 대용량 영상정보의 송, 수신 및 가시화 처리 기술의 기반이 구축됨에 따라, $360^{\circ}$ 스트리밍 영상정보 처리와 같은 고자유도 콘텐츠를 위한 관련 연구의 필요성이 증대되고 있다. 하지만 지능형 영상정보 처리의 대표적 연구인 딥 러닝(Deep Learning) 기반 객체 인식 기술의 경우 대부분 일반적인 평면 영상(Planar Image)에 대한 처리를 다루고 있고, 파노라마 영상(Panorama Image) 특히, $360^{\circ}$ 스트리밍 영상 처리를 위한 연구는 미비한 상황이다. 본 논문에서는 딥 러닝을 이용하여 $360^{\circ}$ 스트리밍 영상에서의 객체인식 연구 방법에 대해 서술한다. 이를 위해 $360^{\circ}$ 카메라 영상에서 딥 러닝을 위한 학습 데이터를 획득하고, 실시간 객체 인식이 가능한 YOLO(You Only Look Once)기법을 이용하여 학습을 한다. 실험 결과에서는 학습 데이터를 이용하여 $360^{\circ}$영상에서 객체 인식 결과와, 학습 횟수에 따른 객체 인식에 대한 결과를 보여준다.

  • PDF

객체 영상의 3D 모델링을 위한 특징점 인식에 관한 연구 (A Study on Feature Point Recognition for 3D Modeling of object image)

  • 정윤수;이해원;김진석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 추계종합학술대회
    • /
    • pp.517-521
    • /
    • 2000
  • 본 논문에서는 영상 처리 방법을 이용하여 주어진 객체의 실세계 좌표를 나타내는 특징점을 인식하는 한 방법을 제안한다. 제안된 방법에서는 육면체 형상의 객체를 대상으로 하며, 이러한 객체 영상의 주요한 특징점은 육면체를 결정짓는 꼭지점들로 이루어진다. 제안된 방법은 CCD 카메라로부터 영상을 획득하는 영상 획득 모듈, 획득된 영상에 대하여 관심 영역을 찾는 영상 분할 모듈, 분할된 관심 영역에 대하여 sobel operator등을 이용하여 경계 정보를 검출하는 영상 처리 모듈, 그리고 세선화, line fitting과정을 통하여 직선 벡터들을 검출한 후에 객체의 주요한 특징점을 인식하는 모듈로 구성된다.

  • PDF

대비 개선 기법을 이용한 야간 보행자 검출 (Night Vision Pedestrian Detection using Contrast Enhancement Algorithm)

  • 한태영;송병철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.222-223
    • /
    • 2016
  • 보행자 인식을 위한 컴퓨터 비전 알고리즘은 야간 상황과 같이 저조도 환경에서는 인식 성능이 떨어지고 있다. 이로 인하여 최근 저조도 환경에서 촬영된 영상으로 야간 상황에서 객체 인식 성능을 높이는 기법들이 연구되고 있다. 야간 환경은 주간 환경과는 다르게 광량이 적기 때문에 인간의 시각으로도 객체 인식에 어려움이 있고 일반적인 카메라로 촬영된 영상으로 객체 인식이 어렵다. 최근에는 NIR 카메라를 이용하여 촬영된 영상으로 야간 보행자 인식 알고리즘이 개발되고 있으나, 인식률과 객체 인식 가능 거리 및 범위가 한정적이다. 또한 기존의 야간 보행자 검출 기법들은 방대한 연산량이 필요하기 때문에 실시간 객체 인식이 불가능하다. 본 논문에서는 NIR 카메라로부터 촬영된 영상으로 preprocessing 후 ACF(Aggregated Channel Feature)를 이용하여 최근 연구되고 있는 카메라 움직임이 있는 야간 환경에서 보행자 인식 알고리즘을 PC 및 TK1 Board 환경에서 구현하고 객체 인식률을 높인다.

  • PDF

실시간 영상의 이동 객체 데이터 변화율을 이용한 에러 필터링 기술 (Error filtering technology using change rate of moving object data in real-time video)

  • 윤경호;김단희;이원석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.155-158
    • /
    • 2019
  • 최근 지능형 CCTV 관제 시스템에 대한 수요가 증가하고 있다. CCTV 영상 데이터의 양이 폭발적으로 증가하고 있어 이를 분석하기 위한 기술의 발전이 필요한 실정이다. 대부분의 지능형 CCTV 관제 시스템은 영상 속 객체를 찾고 이 객체의 메타데이터를 통해 지능형 관제 시스템을 수행한다. 하지만 영상 속 객체의 로그가 항상 정확하지 않다. 현재의 객체 인식 기술로는 CCTV 영상의 밝기, 해상도 조건에 따라 성능의 차이가 심하고, 영상의 프레임 대비 빠르게 움직인 CCTV 영상 속 모든 객체를 사람이 인식하는 정도로 인식하기 어렵다. 이러한 이동 객체의 크기, 위치를 분석한 메타데이터에는 에러가 포함되기 쉽다. 본 논문에서는 지능형 CCTV 관제 시스템에서 분석한 영상 속 객체의 프레임 메타데이터 에러를 학습기반 실시간 에러 필터링 알고리즘을 통해 개선하여 에러가 필터링된 데이터를 사용하는 지능형 관제 시스템의 정확도 향상에 기여 할 것을 기대한다.

  • PDF

3차원 객체 인식을 위한 RGB-D 영상 특징점 추출 및 특징 기술자 생성 방법 (RGB-D Image Feature Point Extraction and Description Method for 3D Object Recognition)

  • 박노영;장영균;우운택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.448-450
    • /
    • 2012
  • 본 논문에서는 Kinect 방식의 RGB-D 영상센서를 사용하여, 깊이(Depth) 영상으로부터 3차원 객체의 기하정보를 표현하는 표면 정규 벡터(Surface Normal Vector)를 추출하고, 그 결과를 영상화하는 방법을 제안하며, 제안된 방법으로 생성된 영상으로부터 깊이 영상의 특징점 및 특징 기술자를 추출하여 3차원 객체 인식 성능을 향상시키는 방법을 제안한다. 또한 생성된 RGB-D 특징 기술자들을 객체 단위로 구분 가능한 코드북(CodeBook) 학습을 통한 인식방법을 제안하여 객체의 인식 성능을 높이는 방법을 제안한다. 제안하는 RGB-D 기반의 특징 추출 및 학습 방법은 텍스쳐 유무, 카메라 회전 및 이동 변화 등의 환경변화에 강건함을 실험적으로 증명하였으며, 이 방법은 Kinect 방식의 RGB-D 영상을 사용하는 3차원 객체/공간 인식 및 추적, 혹은 이를 응용하는 증강현실 시스템에 적용하여 사용될 수 있다.

유사객체 분류에 의한 유사 의료영상의 검색 (Retrieval of Similar Medical image Objects using Conceptual Clustering Methods)

  • 원정임;이덕형;송혜정;윤지희;김백섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.34-36
    • /
    • 2002
  • 의료영상 처리시스템의 자동인식 결과 등과 함께 진단 중인 의죠 영상과 유사한 영상객체를 임의로 검색하여 부가정보로 활용할 수 있는 지능적 의료정보 시스템 구현에 대하여 논한다 의료 영상객체간 유사도 계산을 위하여 각 객체로부터 추출된 특징 정보를 객체 속성으로 이용하며, 이 들 특징 값들의 빈도와 관련 분포 속성 간 관련성 등을 고려한 유사객체 분류방식을 사용한다. 이와 같이 얻어진 영상객체 간 유사도 정보는 지식베이스로 관리되어 자동 영상 인식에 사용될 뿐 아니라 유사 영상 검색 및 진단의 근거자료로 사용된다. 즉 전문의나 병리학자들은 진단 과정에서 유사영상의 판독 결과 등을 참조함으로써 영상의 정확한 판독 및 진단 확증의 객관적 근거 자료를 학보하는데 도움을 받을 수 있다. 구현된 시스템의 적용 예로 자궁경부 세포진 영상인식 시스템을 이용하여 그 유용성을 보인다.

  • PDF

사용자-객체 상호작용을 위한 복잡 배경에서의 객체 인식

  • 배주한;황영배;최병호;김효주
    • 정보와 통신
    • /
    • 제31권3호
    • /
    • pp.46-53
    • /
    • 2014
  • 사용자-객체 상호작용을 위해서는 영상 내 객체의 종류와 위치를 정확하게 파악하여 사용자가 객체에 관련된 행동을 취할 경우, 그에 맞는 상호작용을 수행해야 한다. 이러한 객체인식에 널리 사용되는 지역 불변 특징량 기반의 방법론은 복잡한 배경이나 균일 물체에 대하여 잘못된 매칭으로 인식률이 저하된다. 본고에서는 이를 해결하기 위해, 컬러와 깊이 근접도 기반 깊이 계층을 나누고, 복잡 배경으로부터 생기는 잘못된 특징점 대응을 최소화 하기 위해 각 깊이 계층과 인식 물체 영상간의 특징점 대응을 수행한다. 또한, 각 깊이 계층영역에서 색상 히스토그램 재투영으로 객체의 위치를 추정하고 추정 영역과 인식 물체 영상간의 생상 및 깊이 유사도를 판단한다. 최종적으로, 복잡 배경 효과를 최소화한 특징점 대응의 수, 색상 및 컬러 유사도를 고려하여 신뢰도를 측정하여 객체를 인식하게 되며, 이를 통해 복잡한 배경에서도 사용자와 객체간의 유연한 상호작용이 가능해진다.

사용자 추적, 인식을 위한 영상인식 기술개발 동향

  • 김승훈;정일균;박창우;황정훈
    • 제어로봇시스템학회지
    • /
    • 제17권1호
    • /
    • pp.18-24
    • /
    • 2011
  • 영상인식기술은 지능로봇 또는 지능형 홈이 하나 또는 다수의 영상정보를 이용하여 일상 생활 환경에서 대상 객체의 유무, 객체의 식별, 객체의 형상 추출, 객체의 위치 파악등을 자동으로 수행하는 기술을 통칭한다. 이러한 영상인식기술은 지능형 로봇과 지능형 홈, 지능형 안전시스템 등 앞으로 생활환경을 급속히 변화시킬 것으로 예상되는 첨단기기에서 가장 중요한 핵심기술이다.