• Title/Summary/Keyword: 객체특징벡터

Search Result 113, Processing Time 0.027 seconds

A Study on The Tracking and Analysis of Moving Object in MPEG Compressed domain (MPEG 압축 영역에서의 움직이는 객체 추적 및 해석)

  • 문수정;이준환;박동선
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.103-106
    • /
    • 2001
  • 본 논문에서는 MPEG2비디오 스트림에서 직접 얻을 수 있는 정보들을 활용하여 카메라의 움직임을 추정하여 이를 기반으로 하여 움직이는 객체를 추정하고자 한다. 이를 위해, 먼저 MPEG2의 움직임 벡터는 압축의 효율성 때문에 움직임의 예측이 순서적이지 못한데, 예측 프레임들의 속성을 이용하여 이를 광 플로우(Optical Flow)를 갖는 움직임 벡터(Motion Vector)로 변환하였다. 그리고 이러한 벡터들을 이용하여 카메라의 기본적인 움직임인 팬(Fan), 틸트(Tilt). 줌(Zoom) 등을 정의하였다. 이를 위하여 팬, 틸트-줌 카메라 모델의 매개변수와 같은 의미의 $\Delta$x, $\Delta$y, $\alpha$값을 정의하고자 움직임 벡터 성분의 Hough변환을 이용하여 $\Delta$x, $\Delta$y, $\alpha$값들을 구하였다. 또한 이러한 카메라 움직임(Camera Operation)은 시간적으로 연속적으로 발생하는 특징을 이용하여 각 프레임마다 구한 카메라의 움직임을 보정하였다. 마지막으로 움직이는 객체의 추정은 우선 사용자가 원하는 객체를 바운딩박스 형태로 정의한 후 카메라 움직임이 보정된 객체의 움직임 벡터를 한 GOF(Group of Pictures) 단위로 면적 기여도에 따라 누적하여 객체를 추적하고 해석하였으며 DCT 질감 정보를 이용하여 객체의 영역을 재설정 하였다. 물론 압축된 MFEG2비디오에서 얻을 수 있는 정보들은 최대 블록 단위이므로 객체의 정의도 블록단위 이상의 객체로 제한하였다. 제안된 방법은 비디오 스트림에서 직접 정보를 얻음으로써 계산속도의 향상은 물론 카메라의 움직임특성과 움직이는 객체의 추적들을 활용하여 기존의 내용기반의 검색 및 분석에도 많이 응용될 수 있다. 이러한 개발 기술들은 압축된 데이터의 검색 및 분석에 유용하게 사용되리라고 기대되며 , 특히 검색 툴이나 비디오 편집 툴 또는 교통량 감시 시스템, 혹은 무인 감시시스템 등에서 압축된 영상의 저장과 빠른 분석을 요구시 필요하리라고 기대된다.

  • PDF

MPEG-4 Object Browsing and Extraction by Learning (MPEG-4 객체의 브라우징 및 학습에 의한 추출 기법)

  • 양만석;오상욱;설상훈
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.115-120
    • /
    • 1999
  • 본 논문은 MPEG-4 비디오 객체의 브라우징(browsing) 및 학습을 통한 객체 추출 기법을 제안한다. 제안된 학습에 의한 객체 추출 기법은, 객체 브라우징 시 임의 접근한 프레임에서 사용자가 내용 기반의 객체를 검색하기 위해 선택한 영역에 대한 인지적인 정보를 특징벡터(feature vector)로 history에 저장, 활용함으로써 프레임 내 객체의 계층적인 군집화(clustering)를 수행한다. 이러한 기법으로 인지적 개념과 근접하게 객체를 인식할 수 있음을 실험을 통해 확인하였다.

  • PDF

Image Retrieval using Interleaved Contour by Declination Difference and Texture (편각 차분에 의한 중첩 윤곽선과 질감을 이용한 영상 검색)

  • Lee, Jeong-Bong;Kim, Hyun-Jong;Park, Chang-Choon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.767-770
    • /
    • 2002
  • 영상 검색의 수행 방법으로 사람의 시각 시스템의 특성을 기반으로 웨이블릿 변환의 고주파수 에너지와 형태학적 필터링을 이용하여 분할된 객체의 효과적인 특징 추출을 통한 계층적인 검색 시스템을 제안한다. 영상 고유의 특징을 얻기 위해 객체의 형태 정보와 질감(texture) 방향성 및 칼라 정보를 이용한다. 본 논문에서는 객체의 형태 정보의 추출을 위하여 사용자의 질의(query)영상에서 객체의 윤곽선의 편각차분 변동율에 의한 형태 특징 벡터를 추출하고 GLCM (Gray Level Co-occurrence Matrix)의 Contrast를 질감 특징으로 추출한다. 이들 두 특징을 이용하여 1차 분류 과정을 거치고 2차 검사에서는 보다 정확한 검색을 수행하기 위하여 1차로 분류된 후보영상들에 대하여 세부 정보인 칼라 정보를 기반으로 유사도를 측정함으로써 유사한 칼라와 형태를 가지는 영상뿐만 아니라 칼라가 다른 유사한 영상에도 효율적인 검색 성능을 보였다.

  • PDF

An Displacement Detection Model in Cultural Asset Images using Object-centric Augmentation (객체 중심 증강 기법을 사용한 목조 문화재 영상에서의 변위 감지 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.137-139
    • /
    • 2021
  • 본 논문에서는 목조 문화재 영상에서의 변위를 효율적으로 감지하기 위한 객체 중심 증강 기법을 사용한 모델을 제안한다. 우선 객체 중심 증강 기법을 적용하여 변위 객체들이 이미지 공간상의 어느 곳이든 위치할 수 있게끔 데이터를 구성한 이후 사전 학습된 합성 곱 신경망을 사용하여 입력 이미지에 대한 심층 특징 벡터를 추출한다. 그 이후 심층 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 객체 중심 증강 기법을 사용한 모델이 객체 중심 증강 기법을 사용하지 않은 모델보다 목조 문화재에서 변위 영역을 더 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

Loitering Detection Solution for CCTV Security System (방범용 CCTV를 위한 배회행위 탐지 솔루션)

  • Kang, Joohyung;Kwak, Sooyeong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.15-25
    • /
    • 2014
  • In this paper, we propose a loitering detection using trajectory probability distribution and local direction descriptor for intelligent surveillance system. We use a background modeling method for detecting moving object and extract the motion features from each moving object for making feature vectors. After that, we detect the loitering behavior person using K-Nearest Neighbor classifier. We test the proposed method in real world environment and it can achieve real time and robust detection results.

Rotation Transformation Invariant Texture Classification for Object Recognition of Surveillance Camera Image (감시 카메라 영상의 객체 인식을 위한 회전 변화에 강인한 질감 분류)

  • Kim, Won-Hee;Park, Seong-Mo;Kim, Jong-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.171-172
    • /
    • 2009
  • 질감 분류 기술은 패턴인식과 컴퓨터 비전 분야에서 널리 사용되는 기술로서, 최근 들어서는 감시 카메라 시스템에서의 정확한 객체 인식을 위한 회전 변화에 강인한 질감 분류 연구가 진행되고 있다. 본 논문에서는 순환 가보 웨이블렛 필터를 이용한 회전 변환에 강인한 질감 분류 방법을 제안한다. 제안하는 방법은 순환 가보 웨이블렛 필터링된 영상에서 전역 및 지역 특징 벡터를 계산하고 특징 벡터의 차이를 이용한 유사도 측정 판별식으로 질감 분류를 수행한다. Brodatz 질감 앨범을 이용한 실험에서 기존의 방법들보다 2~6% 향상된 질감 분류 비율을 확인할 수 있었다. 제안하는 방법은 질감 기반 객체 인식에 관련된 응용 분야에서 유용하게 사용될 수 있다.

Cell-based Signature Tree: Efficient Indexing Structures for Similarity Search in High-Dimensional Feature Space (셀기반 시그니쳐 트리: 고차원 데이터의 유사어 검색을 위한 효율적인 색인 구조)

  • 송광택;장재우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.134-136
    • /
    • 2000
  • 본 논문에서는 고차원의 특징 벡터 공간에서의 객체에 대한 효율적인 검색을 지원하는 셀기반 시그니쳐 트리 색인 구조(CS-트리, CI-트리)를 제안한다. 특징 벡터 공간을 셀로써 분할하고 특징 벡터는 셀의 시그니쳐로 표현되며 트리에 저장된다. 특징 벡터 대신 시그니쳐를 사용하여 트리의 깊이가 낮아짐으로서 검색을 효율적으로 수행할 수 있다. 또한 셀에 적합한 새로운 가지치기 거리를 이용한 유사성 검색 알고리즘으로 수행할 수 있다. 또한 셀에 적합한 새로운 가지치기 거리를 유사성 검색 알고리즘을 제시한다. 마지막으로 우수한 고차원 색인 기법으로 알려져 있는 X-트리와 성능 비교를 수행하여, 성능비교 결과 본 논문에서 제안하는 CS-트리와 CI-트리가 검색 시간 측면에서 최대 30%의 검색 성능이 개선됨을 보인다.

  • PDF

Rule-based and Probabilistic Event Recognition of Independent Objects for Interpretation of Emergency Scenarios (긴급 상황 시나리오 해석을 위한 독립 객체의 규칙 기반 및 확률적 이벤트 인식)

  • Lee, Jun-Cheol;Choi, Chang-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.3
    • /
    • pp.301-314
    • /
    • 2008
  • The existing event recognition is accomplished with the limited systematic foundation, and thus much longer learning time is needed for emergency scenario interpretation due to large scale of probability data. In this paper, we propose a method for nile-based event recognition of an independent object(human) which extract a feature vectors from the object and analyze the behavior pattern of each object and interpretation of emergency scenarios using a probability and object's events. The event rule of an independent object is composed of the Primary-event, Move-event, Interaction-event, and 'FALL DOWN' event and is defined through feature vectors of the object and the segmented motion orientated vector (SMOV) in which the dynamic Bayesian network is applied. The emergency scenario is analyzed using current state of an event and its post probability. In this paper, we define diversified events compared to that of pre-existing method and thus make it easy to expand by increasing independence of each events. Accordingly, semantics information, which is impossible to be gained through an.

  • PDF

A Content-Based Image Retrieval Technique Using the Shape and Color Features of Objects (객체의 모양과 색상특징을 이용한 내용기반 영상검색 기법)

  • 박종현;박순영;오일환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1902-1911
    • /
    • 1999
  • In this paper we present a content-based image retrieval algorithm using the visual feature vectors which describe the spatial characteristics of objects. The proposed technique uses the Gaussian mixture model(GMM) to represent multi-colored objects and the expectation maximization(EM) algorithm is employed to estimate the maximum likelihood(ML) parameters of the model. After image segmentation is performed based on GMM, the shape and color features are extracted from each object using Fourier descriptors and color histograms, respectively. Image retrieval consists of two steps: first, the shape-based query is carried out to find the candidate images whose objects have the similar shapes with the query image and second, the color-based query is followed. The experimental results show that the proposed algorithm is effective in image retrieving by using the spatial and visual features of segmented objects.

  • PDF

Real-time Multi-Objects Recognition and Tracking Scheme (실시간 다중 객체 인식 및 추적 기법)

  • Kim, Dae-Hoon;Rho, Seung-Min;Hwang, Een-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.386-393
    • /
    • 2012
  • In this paper, we propose an efficient multi-object recognition and tracking scheme based on interest points of objects and their feature descriptors. To do that, we first define a set of object types of interest and collect their sample images. For sample images, we detect interest points and construct their feature descriptors using SURF. Next, we perform a statistical analysis of the local features to select representative points among them. Intuitively, the representative points of an object are the interest points that best characterize the object. in addition, we make the movement vectors of the interest points based on matching between their SURF descriptors and track the object using these vectors. Since our scheme treats all the objects independently, it can recognize and track multiple objects simultaneously. Through the experiments, we show that our proposed scheme can achieve reasonable performance.