• Title/Summary/Keyword: 개질촉매

Search Result 298, Processing Time 0.024 seconds

Kinetic Study of Copper Hydrotalcite Catalyst in Methanol Steam Reforming (메탄올 수증기 개질반응에서 구리가 함침된 하이드로탈사이트 촉매를 이용한 키네틱 연구)

  • Lee, Jae-hyeok;Jang, Seung Soo;Ahn, Ho-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.16-21
    • /
    • 2022
  • The reaction rate of a catalyst for producing hydrogen using the methanol steam reforming reaction was studied. It was prepared by impregnating copper, which is often used in methanol synthesis, as the main active metal, using hydrotalcite, which has excellent porosity and thermal stability, high specific surface area, weak Lewis acid point, and basicity, as a support. Activation energy and Pre-exponential factors were identified. In this study, the activation energy of the hydrotalcite catalyst impregnated with 20 wt% copper was calculated to be 97.4 kJ/mol and the Pre-exponential was 5.904 × 1010. Process simulation was performed using the calculated values and showed a similar tendency to the experimental results.

Autothermal Reforming of Propane over Ni/CexZr1-xO2 Catalysts (Ni 담지 CexZr1-xO2 촉매상에서 프로판의 자열개질반응)

  • Kong, Jin-Hwa;Park, Nam-Cook;Kim, Young-Chul
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • In this study, the catalytic performance and characterization of $Ni/Ce_xZr_{1-x}O_2$ were investigated using an autothermal reforming (ATR) process for hydrogen production. The $Ni/Ce_xZr_{1-x}O_2$ catalysts were prepared using the following methods: the water method (CZ-W), urea water method (CZ-UW) and urea, water and ethanol method (CZ-UWA). The performance of $Ni/Ce_xZr_{1-x}O_2$ catalysts in autothermal reforming of propane for hydrogen production was studied in a fixed-bed flow reactor. Reaction tests were conducted by using a feed of $H_2O/C_3H_8/O_2$=3/1/0.37 and $300{\sim}700^{\circ}C$. The CZ-UW and CZ-UWA catalysts showed higher propane conversion and hydrogen yield than the CZ-W catalyst. The activity test confirmed that the improvement in the water-ethanol catalyst was due to the low level of carbon deposition. SEM showed that the surface carbon consisted of clusters on the used CZ-UW catalyst, which is incontrast to the nano-fiber morphology observed on the used CZ-UWA catalyst. It was found that the amount of carbon deposition depends on the preparation method. Especially the $Ni/Ce_{0.75}Zr_{0.25}O_2$ was showed higher propane conversion and hydrogen yield than the other catalysts. Also TGA showed that the resistance of carbon deposition increase to Co addition.

The Effect by Aqueous NH4OH Treatment on Ru Promoted Nickel Catalysts for Methane Steam Reforming (암모니아 용액 처리에 의한 Ru-Ni/Al2O3 촉매의 메탄 수증기 개질 반응에 미치는 영향)

  • Lee, Jung Won;Jeong, Jin Hyeok;Seo, Dong Joo;Seo, Yu Taek;Seo, Yong Seog;Yoon, Wang Lai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.87-92
    • /
    • 2006
  • The steam reforming of methane over Ru-promoted $Ni/Al_2O_3$ was carried out. Compared with $Ni/Al_2O_3$, which needs pre-reduction by $H_2$, $Ru/Ni/Al_2O_3$ catalysts exhibited relatively higher activity than conventional $Ni/Al_2O_3$. According to $H_2-TPR$ of reduced or used catalysts and $CH_4-TPR$, it was revealed that the reduction of $RuO_x$ by $CH_4$ decomposition begins at a lower temperature ($220^{\circ}C$) and the reduced Ru facilitates the reduction of NiO, and leads to self-activation. To improve metal dispersion, the catalyst was soaked in 7 M aqueous $NH_4OH$ for 2 h at $45^{\circ}C$ while stirring. As a result, $Ru/Ni/Al_2O_3$ catalysts with aqueous $NH_4OH$ treatment have higher activity, larger metal surface area (by $H_2$-chemisorption), and small particle size (by XRD and XPS). It is noted that the amount of noble metal could be reduced by aqueous $NH_4OH$ treatment.

Syngas Production by Partial Oxidation Reaction over Ni-Pd/CeO2-ZrO2 Metallic Monolith Catalysts (Ni-Pd/CeO2-ZrO2 금속모노리스 촉매체를 사용한 부분산화반응에 의한 합성가스 제조)

  • Yang, Jeong Min;Choe, Jeong-Eun;Kim, Yong Jin;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.319-324
    • /
    • 2013
  • The partial oxidation reaction of methane was investigated to produce syngas with $Ni/CeO_2-ZrO_2$, $Ni-Ru/CeO_2-ZrO_2$ and $Ni-Pd/CeO_2-ZrO_2$ catalysts. Honeycomb metallic monolith was applied in order to obtain high catalytic activity and stability in partial oxidation reforming. The catalysts were characterized by XRD and FE-SEM. The influence of various catalysts on syngas production was studied for the feed ratio (O/C), GHSV and temperature. Among the catalysts used in the experiment, the $Ni-Pd/CeO_2-ZrO_2$ catalyst showed the highest activity. The 99% of $CH_4$ conversion was obtained at the condition of T=$900^{\circ}C$, GHSV=10,000 $h^{-1}$ and feed ratio O/C=0.55. It was confirmed that $H_2$ yield increased slightly as O/C ratio increased, while CO yield remained almost constant. Also, $CH_4$ conversion decreased as GHSV increased. It was found that the safe range of GHSV for high $CH_4$ conversion was estimated to be less than 10,000 $h^{-1}$.

Preparation of perovskite-based catalysts and fuel injection system for high durability of diesel reforming (디젤 개질을 위한 페로브스카이트 구조 촉매와 연료주입 시스템의 개발)

  • Rhee, Junki;Park, Sangsun;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.115.2-115.2
    • /
    • 2010
  • Autothermal reforming(ATR) processes of hydrocarbon liquids such as diesel fuels are spotlighted as methods to produce hydrogen for Fuel cell. However, the use of heavy hydrocarbons as feedstocks for hydrogen production causes some problems which increase the catalyst deactivation by the carbon deposition. Coking can be inhibited by increasing the water dissociation on the catalyst surface. This results in catastrophic failure of whole system. Performance degradation of diesel autothermal reforming leads to increase of undesirable hydrocarbons at reformed gases and subsequently decrease the performance. In this study, perovskite-based catalysts were investigated as alternatives to substitute the noble metal catalyst for the ATR of diesel. The investigated perovskite structure was based on LaCrO3. and metals were added at the A-site to enhance oxygen ion mobility, transition metals were doped on the B-site to enhance the reformation. Substituted Lanthanum chromium perovskite were made by aqueous combustion synthesis, which can produce high surface area. And for the homogeneous fuel supply, we made ultrasonic injection system for reforming. We compared durability of evaporation system and ultrasonic system for fuel injection.

  • PDF

Synthesis of Thin Film Type Cu/ZnO Nanostructure Catalysts for Development of Methanol Micro Reforming System (마이크로 개질기 개발을 위한 박막형 Cu/ZnO 나노구조 촉매 합성)

  • Yeo, Chan Hyuk;Kim, Yeon Su;Im, Yeon Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.193-199
    • /
    • 2013
  • In this work, thin film type Cu/ZnO nanostructure catalysts were fabricated by several synthetic routes in order to maximize the performance of the micro reforming system. For this work, various Cu/ZnO nanostructure catalysts could be synthesized by means of four approaches which are chemical vapor method, wet solution method and their hybrid method. The reforming performance of these as-synthetic catalysts was evaluated as compared to the conventional catalysts. Among the as-synthetic nanostructures, sphere type catalysts with specific surface of $18.6m^2/g$ showed the best performance of hydrogen production rate of 30ml/min at the feed rate of 0.2ml/min. This work will give the first insight on thin film type Cu/ZnO nanostructure catalyst for micro reforming system for hydrogen production of portable electronic systems.

$CO_2$ reforming of $CH_4$ and growth of CNT on Ni catalyst (메탄의 이산화탄소 개질반응과 사용된 Ni 촉매 표면에서의 CNT 성장)

  • Kim, Hee-Yeon;Jeong, Nam-Ho;Song, Kwang-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.511-512
    • /
    • 2008
  • For the $CO_2$ reforming of $CH_4$, Ni catalyst was supported on La-hexaaluminate or on $\gamma$-$Al_2O_3$. The catalytic activities of Ni/La-hexaaluminate catalysts were measured at $700^{\circ}C$ using gas chromatography (GC) for 72 h, and the reaction was maintained up to 72 hfor the investigation of catalyst deactivation. The surface of each catalyst after 72 h reaction was investigated using SEM and TEM, and the composition of the carbon deposits was investigated by using EA, TPO and TGA. Ni/La-hexaaluminate shows higher resistance to coke deposition than conventional Ni/$Al_2O_3$ which seems to be due to strong interaction between Ni and the support material. As a result of the reforming reaction, various types of carbon deposits were created on catalyst surface and the amounts of them were much smaller in the case of La-hexaaluminate than on $Al_2O_3$.

  • PDF

Tar Reforming for Biomass Gasification by Ru/$Al_2O_3$ catalyst (Ru/$Al_2O_3$ 촉매를 이용한 바이오매스 타르 개질 특성)

  • Park, Yeong-Su;Kim, Woo-Hyun;Keel, Sang-In;Yun, Jin-Han;Min, Tai-Jin;Roh, Seon-Ah
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.247-250
    • /
    • 2008
  • Biomass gasification is a promising technology for producing a fuel gas which is useful for power generation systems. In biomass gasification processes, tar formation often causes some problems such as pipeline plugging. Thus, proper tar treatment is necessary. So far, nickel (Ni)-based catalysts have been intensively studied for the catalytic tar removal. However, the deactivation of Ni-based catalysts takes place because of coke deposition and sintering of Ni metal particles. To overcome these problems, we have been using ruthenium (Ru)-based catalyst for tar removal. It is reported by Okada et al., that a Ru/$Al_2O_3$ catalyst is very effective for preventing the carbon deposition during the steam reforming of hydrocarbons. Also, this catalyst is more active than the Ni-based catalyst at a low steam to carbon ratio (S/C). Benzene was used for the tar model compound because it is the main constituent of biomass tar and also because it represents a stable aromatic structure apparent in tar formed in biomass gasification processes. The steam reforming process transforms hydrocarbons into gaseous mixtures constituted of carbon dioxide ($CO_2$), carbon monoxide (CO), methane ($CH_4$) and hydrogen ($H_2$).

  • PDF

kW-class Diesel Autothermal Reformer with Microchannel Catalyst for Solid Oxide Fuel Cell System (고체산화물 연료전지 시스템을 위한 kW급 마이크로채널 촉매 디젤 자열 개질기)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.558-565
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) has a higher fuel flexibility than low temperature fuel cells, such as polymer electrolyte fuel cell(PEMFC) and phosphoric acid fuel cell(PAFC). SOFCs also use CO and $CH_4$ as a fuel, because SOFCs are hot enough to allow the CH4 steam reformation(SR) reaction and water-gas shift(WGS) reaction occur within the SOFC stack itself. Diesel is a good candidate for SOFC system fuel because diesel reformate gas include a higher degree of CO and $CH_4$ concentration than other hydrocarbon(methane, butane, etc.) reformate gas. Selection of catalyst for autothermalr reforming of diesel was performed in this paper, and characteristics of reforming performance between packed-bed and microchannel catalyst are compared for SOFC system. The mesh-typed microchannel catalyst also investigated for diesel ATR operation for 1kW-class SOFC system. 1kW-class diesel microchannel ATR was continuously operated about 30 hours and its reforming efficiency was achieved nearly 55%.