• Title/Summary/Keyword: 개인용 비행체

Search Result 8, Processing Time 0.026 seconds

Prerequisites for Realizing Urban Air Traffic (UAM) and Personal Air Vehicle (PAV) (도심항공교통(UAM)과 개인용 비행체(PAV) 실현화를 위한 선행 조건에 대한 전망)

  • Choi, Jeongho;Choi, Young-Moon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.147-153
    • /
    • 2020
  • This study is aimed at a basic infrastructure for realizing urban air mobility (UAM) and personal air vehicle (PAV), which have recently been high interest as new means of transportation. The development of UAM and PAV technologies is a field of a high added value that the world is competitively pushing for the world. However, the three most fundamental aspects are the establishing an aviation certification system, finding reliable manufacturers having advanced technical abilities, and the training/securing of professional manpower. Above all, the aviation certification system will be established for the first time. Based on the certification system, it will be possible to realize the government's policy goal of introducing new means of transportation, including the production of aircraft and to realize commercialization that meets international standards that satisfy conformity and compliance. In addition, finding reliable manufacturers, fostering professionals, and establishing an educating system for stable supplying of the professionals are main projects to become a leading country in the field.

Flight simulator Development for a Large Number of UAVs (대량 소형 무인 항공체 비행시뮬레이터 개발)

  • Choi, Hyo Hyun;Cho, Soohan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.299-300
    • /
    • 2018
  • 개인 레저용, 상업용형 소형 무인 항공체 (UAV, Unmanded Aerial Vehicle)가 급증하는 상황에서 지상의 장애물과 법 규제 등으로 인하여 좁은 공간에 높은 밀도로 비행할 것이 예상 된다. 본 논문에서는 이런 상황에서 다수의 UAV가 비행 시에 발생할 수 있는 상황을 테스트를 위하여 Nvidia社의 PhysX 물리 엔진을 사용한 Unity3D를 이용하여 시뮬레이터를 개발한 결과를 보인다. 실제 비행 전 시뮬레이션으로 UAV의 이동 및 충돌여부, 병목현상 등에 대한 정보를 취득할 수 있도록 개발 하였다.

  • PDF

Development of Panel-Based Rapid Aerodynamic Analysis Method Considering Propeller Effect (프로펠러 효과를 반영 가능한 패널 기반 신속 공력 해석 기법 개발)

  • Tai, Myungsik;Lee, Yebin;Oh, Sejong;Shin, Jeongwoo;Lim, Joosup;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • Electric-powered distributed propulsion aircraft possess a complex wake flow and mutual interference with the airframe, due to the use of many propellers. Accordingly, in the early design stage, rapid aerodynamic and load analysis considering the effect of propellers for various configurations and flight conditions are required. In this study, an efficient panel-based aerodynamic analysis method that can take into account the propeller effects is developed and validated. The induced velocity field in the region of propeller wake is calculated based on Actuator Disk Theory (ADT) and is considered as the boundary condition at the vehicle's surface in the three-dimensional steady source-doublet panel method. Analyses are carried out by selecting an isolated propeller of the Korea Aerospace Research Institute (KARI)'s Quad Tilt Propeller (QTP) aircraft and the propeller-wing configuration of the former experimental study as benchmark problems. Through comparisons with the results of computational fluid dynamics (CFD) based on actuator methods, the wake velocity of propeller and the changes in the aerodynamic load distribution of the wing due to the propeller operation are validated. The method is applied to the analysis of the Optional Piloted Personal Aerial Vehicle (OPPAV) and QTP, and the practicality and validity of the method are confirmed through comparison and analysis of the computational time and results with CFD.

The Study on Small Aircraft Transportation System in Higher Volume Opreations (소형항공기의 고밀도 운용방안 연구)

  • Kim, Hyun-Su;Yoo, Byeong-Seon;Kang, Ja-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2011
  • This paper summarizes the HVO concept and procedures, presents a summary of the research and results, and outlines areas where future HVO is required. This concept enables people to get their destinations through shortest paths with advanced air traffic control system and equipments. The concept's key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software which are needed for supporting flight information present on the high Way in the sky display and airborne internet. By assigning Self-Controlled Area which assume pilot have separation responsibility, controllers evaluated SATS HVO concept as a successful method on the view of reduced workload and increased traffic level on high volume operation.

The Status and outlook of Propulsion System for Electric Powered Personal Air Vehicles (전기 동력 Personal Air Vehicle의 추진시스템 현황 및 전망)

  • Lee, Sun-Kyoung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.183-186
    • /
    • 2011
  • In this paper, we present some results of power analyses, and weight estimation on electric propulsion systems for Personal Air Vehicles(PAV) applications. When hybrid electric propulsion is adopted, its power performance using fuel cells and batteries is inferior to that of internal combustion engines for 1,000 kg PAV. However, hybrid electric propulsion systems may replace IC engines when energy density and power density is over $0.75kW{\cdot}hr/kg$and 2.5 kW/kg, respectively.

  • PDF

Conceptual Design and Development Test of an Unmanned Scaled-down Quad Tilt Prop PAV (쿼드 틸트 프롭형 PAV 무인 축소모델 개념설계 및 개발시험)

  • Byun, Young-Seop;Song, Jun-Beom;Kim, Jae-Nam;Jeong, Jin-Suk;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • This paper describes the conceptual design and development test procedure of a unmanned scaled-down personal air vehicle(PAV) with drive and flight dual mode capability. Trade studies on operational requirements led to the suggestion of a quad tilt prop platform which has nacelle tilt capability with multi rotor configuration. Motors for propeller propulsion and driving mechanism were integrated into a single nacelle, then they were implemented by nacelle tilt mechanism for conversion between the drive and the flight modes. Primary design parameters and initial specifications were confirmed through conceptual design, then functional tests were performed with the test platforms for the drive and the flight modes.

Derivation of Constraint Factors Affecting Passenger's In-Vehicle Activity of Urban Air Mobility's Personal Air Vehicle and Design Criteria According to the Level of Human Impact (도심항공모빌리티 비행체 PAV 탑승자 실내행위에 영향을 미치는 제약 요소 도출 및 인체 영향 수준에 따른 설계 기준)

  • Jin, Seok-Jun;Oh, Young-Hoon;Ju, Da Young
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.3-20
    • /
    • 2022
  • Recently, prior to the commercialization of urban air mobility (UAM), the importance of R&D for air transportation-related industries in urban areas has significantly increased. To create a UAM environment, research is being conducted on personal air vehicles (PAVs). They are key means of air transportation, but research on the physical factors influencing their passengers is relatively insufficient. In particular, because the PAV is expected to be used as a living space for the passengers, research on the effects of the physical elements generated in the PAV on the human body is essential to design an interior space that supports the in-vehicle activities of the passengers. Therefore, the purpose of this study is to derive the constraint factors that affect the human body due to the air navigation characteristics of the PAV and to understand the impact of these constraint factors on the bodies of the passengers performing in-vehicle activities. The results of this study indicate that when the PAV was operated at less than 4,000 ft, which is the operating standard, the constraint factors were noise, vibration, and motion sickness caused by low-frequency motion. These constraint factors affect in-vehicle activity; thus, the in-vehicle activities that can be performed in a PAV were derived using autonomous cars, airplanes, and PAV concept cases. Furthermore, considering the impact of the constraint factors and their levels on the human body, recommended constraint factor criteria to support in-vehicle activities were established. To reduce the level of impact of the constraint factors on the human body and to support in-vehicle activity, the seat's shape and built-in functions of the seat (vibration reduction function, temperature control, LED lighting, etc.) and external noise reduction using a directional speaker for each individual seat were recommended. Moreover, it was suggested that interior materials for noise and vibration reduction should be used in the design of the interior space. The contributions of this study are the determination of the constraint factors affecting the in-vehicle PAV activity and the confirmation of the level of impact of the factors on the human body; in the future, these findings can be used as basic data for suitable PAV interior design.

Performance Analysis of a Mobile Stratospheric Communication System with Channel Codings over Rician Log-Normal Fading Channel Models (라이시안 로그노말 페이딩 채널 모델에서 채널 부호를 사용한 이동 성층권 통신 시스템의 성능 분석)

  • 강병권
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.67-73
    • /
    • 2002
  • There have been increased concerns on mobile stratospheric communication system(SCS) for the purpose of advanced service of personal and high speed communication systems. In fact, this SCS is considered and studied for IMT-2000 service by ITU. Although, it is important to make accurate channel model for prediction of the SCS performance, there is no measured channel data in this system. Thus, in this paper, we estimate the performance of SCS bye use of channel model provided by Corazza(2) and modified by You(3). And also, the effects of channel codings on system performance are analyzed by deriving bit error performance based on realistic Rician log-normal fading channel models. The performance results are divided into three kinds of areas with three kinds of elevation angles 20$^\cire$, 45$^\cire$, and 80$^\cire$. And also the effects of forward error correction channel codings on system performance with Hamming(7,4), HCH( IS,7) and convolutional code of constraint length 3 and code rate R=1/2.

  • PDF