로드 셀의 정밀측정 에러의 가장 큰 요인은 온도에 의한 출력특성 변화이다. 본 논문에서는 주어진 어떤 온도 구간에서만 온도특성을 보상하였던 기존의 방법에 비해 보다 넓은 온도구간에서 로드 셀의 출력의 온도 특성을 보상하고 또한 출력의 온도 특성이 기존의 방식에 의한 것보다 개선된 새로운 로드셀의 온도보상 방법을 제안 하였다.
CP(Counterpropagation)알고리즘은 서로 다른 두 개의 신경망이 하나로 결합 된 혼합형 모델로서, 다른 신경망 모델에 비해 비교적 단순하고 빠른 학습 속도를 보인다. 그러나 CP 알고리즘은 다양한 패턴이 입력되면 충분한 경쟁층의 수가 설정되지 않아 학습이 불안정하고, 출력층에서 연결강도를 조정할 때 일반적인 학습률 조정방법으로 불안정한 학습 결과를 보인다. 이러한 문제점을 해결하기 위해 다수의 경쟁층을 설정하여 경쟁층에서 패턴 분류의 정확성을 높이고, 입력 벡터와 승자 뉴런의 대표 벡터간의 차이와 승자 빈도수를 반영하여 학습률을 동적으로 조정하여 경쟁층에서의 학습이 안정적으로 진행되도록 하고, 출력층에서 연결강도를 조정할 때 모멘텀(momentum)학습법을 적용한 개선된 CP 알고리즘이 제안되었다. 본 논문에서는 개선된 CP 알고리즘에서 경쟁층의 수를 효율적으로 설정하기 위해 퍼지 제어 기법을 이용하여 경쟁층의 수를 결정하는 방법을 제안한다. 제안된 방법은 CP 알고리즘에 입력되는 패턴의 정보를 이용하여 퍼지 소속 함수를 설계하고 입력에 대한 소속도를 계산한 후, 퍼지 제어 규칙을 적용하고, Mamdani의 Min_Max 추론 방법으로 추론한다. 퍼지 추론을 통해 최종적으로 얻어진 값을 무게 중심법으로 비퍼지화 하여 최종적으로 개선된 CP 알고리즘의 경쟁층의 수를 결정하는데 적용한다. 제안된 방법의 학습 및 인식 성능을 평가하기 위해, 숫자, 영어 등과 같이 다양한 패턴을 실험에 적용한 결과, 제안된 방법이 경쟁층의 수를 결정하는데 효과적임을 확인할 수 있었다.
본 논문에서는 도로 주행에서 취득한 영상을 개선하는 방법을 제안한다. 일반적인 도로주행 영상은 다양한 조명 환경과 날씨 상태로 인하여 선명하지 못한 영상이 취득되기도 한다. 특히 역광이나 야간에는 품질이 좋은 선명한 영상을 얻기가 더욱 어려우며, 이는 비전기반 지능형 자동차 기술의 응용에 많은 어려움을 준다. 인간의 시각 인지방법은 여러 가지조명 조건을 고려하여 색을 지각한다. 하지만 기존의 영상 개선 방법들은 광원의 위치와 광도, 기하학적 관계를 고려하지 않기 때문에 완벽한 결과를 얻기가 어려우며, 오히려 영상의 질이 떨어지는 경우도 발생한다. 본 논문에서는 이러한 문제점을 해결하기 위해서 1) 주어진 입력 영상의 전처리 과정을 수행한 후, 2) 선명도를 추정하여 색채의 대비를 평가하고, 3) 과대 및 과소평가 결과를 전처리된 영상과 혼합하여 사람이 지각하는 색상과 같이 개선된 영상을 얻는 효과적인 방법을 제안한다. 본 논문에서 제안하는 방법은 시각적으로 개선된 결과를 보여줄 뿐만 아니라 비전기반 지능형 자동차 기술의 한 응용분야인 교통표지판 검출의 전처리 과정으로 적용되어 성능이 향상됨을 확인할 수 있었다.
서비스 산업은 21세기 새로운 비즈니스 핵심으로 부각되고 있다. 현대 산업에서 서비스 산업은 제조업을 지원하는 산업에서 탈피하여 제조업의 성장을 리드하는 산업으로 급부상하였다. 기업들은 기존 서비스의 개선을 통해 고객들의 다양한 요구사항을 충족시켜 주고자 하였으나, 서비스 개발자의 직관적인 판단에 근거한 서비스의 개선은 높은 실패율을 보이고 있다. 따라서 본 논문에서는 서비스 개발자의 개선 방향성을 지원하기 위해 서비스 개선방법론을 개발하였다. 이 방법론은 120개의 수집된 사례를 바탕으로 TRIZ 모델의 개념을 활용하여 개발되었다. 그 결과 사례 기반 서비스 개선 방법론(Case-based Service Improvement Methodolog; CSIM)이 개발되었고, 이는 서비스 개발자의 창의적인 문제해결을 지원하는 도구로 활용될 수 있을 것이다.
운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보를 이용하여 수직블록과 수평블록을 추출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 윤곽선 추적 알고리즘을 이용하여 개별 식별자를 추출하며, 그들의 인식을 위해서는 개선된 ARTl과 지도 학습 방법을 결합한 개선된 성능의 자가 생성 지도 학습 알고리즘을 제안하여 적용한다. 제안된 방법의 성능을 확인하기 위하여 운송 컨테이너 영상들을 대상으로 실험 결과, 윤곽선 추적 알고리즘을 이용한 식별자의 추출 방법이 히스토그램을 이용한 식별자의 추출 방법보다 추출률이 개선되었고 인식 결과에서도 개선된 ART1 기반 자가 생성 지도 학습 방법이 기존의 ART1 기반 자가 생성 지도 학습 방법보다 인식률이 향상되었다.
최근의 합성음성단위 연결을 통한 음성합성 방법의 잘 알려진 문제점은 연결 부분에서 불연속이 발생한다는 것이다. 본 논문에서는 음성을 합성할 때 나타나는 스펙트럼의 불연속을 제거하기 위하여 개선된 스펙트럼 스무딩 방법을 제안한다. 그리고 보다 좋은 스무딩의 결과를 얻기 위하여 음성합성의 단위로는 문맥에 민감한 클러스터링된 다이폰을 사용한다. 스무딩 방법에서는 연결 구간에서의 다이폰 바운더리에서의 양쪽 스펙트럼의 분포를 고려하여 시간에 따라 가중치를 다르게 주어 스무딩을 수행한다. 또한 가중치를 결정할 때 비선형 함수인 B-Spline함수를 사용하여 스무딩을 수행하여 보다 자연스러운 스펙트럼을 생성 할 수 있었다.
본 연구는 객체지향 컴포넌트 검색을 위해서 개선된 Spreading Activation 방법을 이용하여 다중 패싯 분류된 컴포넌트를 효율적으로 검색할 수 있는 방법을 제안하였다. 객체지향 코드 기반의 관계정의를 위해 특성과 컨텍스트 간에 연관관계를 설정하고, 컨덱스트의 자동 추출을 위한 Spreading Activation 방법의 초기 활성값을 정의하였다. 쿼리에 대해 자동 검색된 컨텍스트에 의해 후보컴포넌트가 선정되고, 쿼리와 컴포넌트 간의 신뢰도가 계산됨으로써 컴포넌트가 검색될 수 있도록 하였다. 본 연구는 다중 패싯 분류된 객체지향 컴포넌트의 검색에 효율적이며, 사용자 수작업의 부담을 최대한 감소시켜 컴포넌트의 재사용성을 높일 수 있도록 하였다.
본 연구의 목적은 아동의 수학 문제해결에 대한 심층적인 관찰을 통하여 기존에 가지고 있는 교수법에 대한 반성을 통하여 바람직한 교수 방법으로의 개선을 위함이다. 본 연구에서는 76명의 예비교사들이 자신들이 만든 수학 문제나 기존의 문제를 한 학생 또는 두 학생의 문제 푸는 방법을 처음부터 끝까지 자세한 관찰한 사실을 통하여 어떻게 기존의 교수법을 반성하는가를 살펴보고 교수법의 개선 방안을 고찰한다. 이 연구를 통하여 학생의 문제 풀이를 심층적으로 관찰하는 것이 기존의 교수법의 바람직한 개선에 어떻게 기여할 수 있는지를 고찰해 본다.
분산 멀티미디어 시스템은 이식성을 보장하고 동적인 자원 변화를 수용하고 올바른 시간에 올바른 데이터 인도를 보장해야 한다. 따라서 분산 멀티미디어 시스템의 각 구성 요소들은 멀티미디어 응용에서 QoS(Quality of Service)를 제공하기 위한 자원 관리 기법과 다양한 종류의 QoS 요구를 수용할 수 있어야 한다. 본 연구에서 가변 전송율을 갖는 비디오에 대한 여러 종류의 QoS 요구를 만족하기 위한 비디오 배치 및 검색 방법을 제안한다. 제안된 방법은 여러 종류의 해상도 요구에서 개선된 성능을 보였다.
병합 과정에 병합 상황을 반영하기 위해 상황 평가에 기반을 둔 병합(ASA) 방법이 제안되었다.[1]. 상황 평가 모델의 정수화된 출력은 병합을 위한 입력으로 사용된다. 상황 평가 모델의 정수화된 출력은 현재의 병합 상황 정도를 나타낸다. ASA 알고리즘은 최소값과 최대값 사이에서 기껏해야 몇 개의 병합 결과를 만들어 낸다. 결과적으로 ASA 방법은 최소값과 최대값 사이에서 보다 더 정교한 병합 결과를 갖는 응용 분야를 적절히 다룰 수 없다. 이러한 문제를 해결하기 위해 두 가지의 개선된 ASA (I-ASA) 방법을 제안한다. 이들 I-ASA 방법에서는 상황 평가 모델의 매개변수의 값이 실수 값이 되는 것이 허용되고, 최소값과 최대값 사이에서 연속된 병합 결과를 만들 수 있게 하기 위해 두 가지의 개선된 ASA 알고리즘을 제시한다. 이들 I-ASA 방법들은 정밀 병합과 근사 병합을 다룰 수 있다. 결과적으로, ASA 방법[1]과 비교할 때 제안된 I-ASA 방법들이 보다 더 정교한 병합 결과를 갖는 응용 분야를 적절히 다룰 수 있고, 또한 보다 범용적인 병합 분야에 사용될 수 있다는 관점에서 장점이 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.