• Title/Summary/Keyword: 개구부가 있는 전단벽

Search Result 12, Processing Time 0.034 seconds

Efficient Analysis of Shear Walls with Openings (개구부가 있는 전단벽의 효율적인 해석)

  • 김현수;남궁계홍;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.237-249
    • /
    • 2002
  • The wall system that is composed only of reinforced concrete walls and slabs is adopted on many high-rise apartment buildings recently constructed. In the apartment buildings, a shear wall may have one or mote openings for functional reasons. Many researches on the analysis of shear wall with openings were performed. But, some restrictions prevent those research results being applied to practical analysis and design procedure. It is necessary to use subdivided finite elements lot accurate analysis of the wall system with openings. But it would cost tremendous amount of analysis time and computer memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method which can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, matrix condensation technique and fictitious beam technique. Analyses of example structures having various types of openings were performed to verify the efficiency of proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

Nonlinear Finite Element Analysis for RC Shear Wall with an Opening Considering Rebar Development Length (철근 정착길이를 고려한 개구부가 있는 철근콘크리트 전단벽의 유한요소해석)

  • Choi, Yun-Bum;Lee, Seong-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.547-554
    • /
    • 2016
  • In this study, nonlinear finite element analysis based on the Modified Compression Field Theory has been conducted to evaluate shear strength of RC walls with opening. On the analysis, reinforcement ratio within development length of rebars nearby the opening was reduced in the model in order to investigate the effect of opening on shear strength of RC shear walls. The nonlinear finite element analysis has been verified through comparison with the test result in literature. Through the verification, it was investigated that the analysis considering the development length of rebars well reflected the effect of an opening on shear strength of RC shear walls while current design provisions did not reasonably consider one.

Efficient Three Dimensional Analysis of High-Rise Shear Wall Building with Openings (개구부가 있는 고층 벽식 구조물의 효율적인 3차원 해석)

  • 김현수;남궁계홍;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.351-365
    • /
    • 2002
  • The box system that is composed only of reinforced concrete walls and slabs we adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take significant amount of computational time and memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were performed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

Shear Strength Reduction Ratio of Reinforced Concrete Shear Walls with Openings (개구부를 갖는 철근콘크리트 전단벽의 전단강도 저감률)

  • Bae, Baek-Il;Choi, Yun-Cheul;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.451-460
    • /
    • 2010
  • There are many types of remodeling, however, engineers and architectures preferred to merge two or more separate units to one very spacious unit. Performing this type of remodeling, in the case of wall dominant apartments, requires partial removal of structural wall causing a concern of structural integrity. However, there are insufficient studies about partial removal, that is, openings. Presently, ACI standard have no clear way to evaluate the effect of opening on the structural wall. AIJ has the provision about strength reduction factor '$\gamma$'. However, this reduction factor cannot exactly evaluate the reduction effect of openings because this factor '$\gamma$' was determined through the elastic analysis. Therefore, in this study, 2 structural wall specimens were tested and many test results from previous studies were collected. Using these data, this study performed statistical analysis about strength of structural wall which have the opening in wall panel. And this study performed parametric study verifying shear strength reducing effect by opening area. In the results of statistical study, previous reduction factor show very conservative results because this equation did not consider other factors, reinforcement ratio and aspect ratio of openings, which was affect the shear strength of shear walls. Therefore we performed parametric study based on the test data and suggest new equation for shear strength reduction factor '$\gamma$'.

Influence of Openings on the Structural Behavior of Shear Walls with Slabs (슬래브가 있는 전단벽의 구조적 거동에 대한 개구부의 영향)

  • Choi, Youn-Cheul;Choi, Hyun-Ki;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.3-11
    • /
    • 2008
  • An experimental investigation was conducted with half-scale representations of the reinforced concrete shear walls with the opening subjected to cyclic loads. Specimens were half scale representations of a one-story wall in the apartment built in 1980. The area ratio of the opening section, as well as the size and critical section of coupling slabs, were decided based on results from a previous researches. The test result of WS-0.23 specimen, which has artificial damages to install the opening, the strength of the wall decreased due to the opening. It is apparent that influence of cutting reinforcing bars and decrease of effective section area lead to early first yield of the reinforcing bars before the allowable limit of drift ratio of the shear walls was reached. Therefore, proper reinforcing method is needed to prevent this. The decrease of strength of the shear walls by installation of openings shows a great deal of difference compared to previous researches. This is because flexural capacity of the slabs is working as coupling elements for the shear walls. The critical section of coupling slabs that works as coupling elements for shear walls was a little different from the results of previous researches.

Retrofit Performance of Artificially Perforated Shearwall by Retrofit Method (보강기법에 따른 개구부가 있는 전단벽의 보강효과 규명)

  • Choi, Hyun-Ki;Lee, Jin-Ah;Choi, Yoon-Chel;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.29-32
    • /
    • 2008
  • The renewal of existing buildings rather than new construction has increased due to it's cost effective characteristics. Remodeling is also an environmentally-friendly approach that reduces the amount of waste in construction site. Remodeling can sometimes include partial destruction of the structural members of a building. In addition it is important that the buildings under going remodeling retrofitted to make themselves stable and meet up with the future demands for better structural performance. The objective of this paper is to present the test results and structural behavior of RC walls that are perforated and to introduce effective retrofitting methods by evaluating efficacy of passive retrofit and active retrofit. Passive retrofit and Active retrofit using carbon fiber sheets, steel plates and wire that are widely used for strengthening the main members of existing buildings. The test results showed that the failed specimens had shear fractures and that two different types of retrofit method had different effects on the strengths of each specimen.

  • PDF

Application of LRBs for Reduction of Wind-Induced Responses of Coupled Shear Wall Structures (전단벽 구조물의 풍응답 저감을 위한 LRB의 적용)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Kim, Min-Gyun;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2011
  • In general, shear walls are employed as lateral resistance system. Most of shear wall structures require openings in shear walls and thus shear walls are linked by floor slabs or coupling beams resulting in the coupled shear wall structures. In this study, an LRB (lead rubber bearing) was introduced in the middle of the coupling beam of the coupled shear wall structures and the wind-induced response reduction effect of this system was investigated. In order to evaluate the control performance of the proposed method, 20- and 30-story building structures were used as example structures and boundary nonlinear time history analyses have been performed using artificial wind excitation. Japanese vibration evaluation criteria was employed to evaluate whether the proposed system could improve the serviceability of the tall coupled shear wall structures under wind excitation. Based on analytical results, it has been shown that the proposed method that connects shear walls with LRBs can improve the wind-induced response control effect.

Experimental Study of Coupled Shearwalls with different Coupling Member (인방보의 형태에 따른 개구부가 있는 전단벽의 거동 특성에 대한 실험적 연구)

  • Bae, Baek-Il;Choi, Hyun-Ki;Choi, Yoon-Chel;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.37-40
    • /
    • 2008
  • Many engineers find the way of improving the old building's structural behavior in the remodeling project which is performed using artificial openings for merging two houses. This test was performed to verify the characteristics of coupling beams according to the shape of the openings. One of test specimen has rectangle shape and the other was made by the circle shaped opening and one has coupling member only as slabs. Additionally, three specimens which have openings have 23% ratio in opening area to total wall area. Consequently, solid type which have no opening area shows shear failure. In the case of CW-RBS which have rectangular shaped opening, cracks are developed in coupling beam significantly. And CW-CS which has circular opening failed in shear showing development of diagonal cracks at wall toes and wall mid-height. It is thought that degradation of the wall strength is under the control of the opening shape and coupling beam-wall connection area.

  • PDF

A Study on the Structural Performance of Reinforced Concrete Shear Walls with An Opening (개구부가 있는 전단벽의 구조성능 평가)

  • Choi, Hyun-Ki;Choi, Youn-Cheul;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.102-105
    • /
    • 2006
  • Nowadays, increase of demands on efficient utilization of resources while construction process stimulates structural engineers to select remodeling to improve old buildings. To analyze the effects of openings that may be installed in the course of remodeling old buildings, an experimental research was carried out using four approximately half scale of specimens subjected to constant axial forces, and cyclic loading to simulate seismic conditions. Consequently, the existence of opening was verified to induce different observed damages, which caused by reduction of compression strut support formed on the surface of wall. Especially, the maximum force was revealed to decrease approximately 35% as openings were existed. As this tendency was appeared with stiffness and energy dissipation capacity.

  • PDF

Seismic Responses Control of Coupled Shear Wall Structures Using LRBs (LRB를 이용한 병렬전단벽 구조물의 지진응답제어)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Kim, Min-Gyun;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • Most of shear wall structures require openings in shear walls and thus shear walls are linked by floor slabs or coupling beams resulting in the coupled shear wall structures. When these structures are subjected to seismic excitations, excessive shear forces are induced in coupling beams. Accordingly, brittle failure of coupling beams may occur or shear walls may yield first. To avoid this problem, damping devices can be installed in coupling beams. It can increase the vibration control effect and improve the seismic resistance performance of the coupled shear wall structure by avoiding stress concentration and the brittle failure of coupling beams. Based on this background research, an LRB (lead rubber bearing) was introduced in the middle of the coupling beam in this study and the authors investigated the seismic response control effect and stress distribution of the proposed system. To this end, a modeling technique that can effectively predict the structural behavior of coupled shear wall structures has been proposed. With this proposed technique, time history analyses of the example coupled shear wall structure subjected to seismic excitation were performed and the vibration control effects of the seismic responses were investigated.