• Title/Summary/Keyword: 강 부재

Search Result 678, Processing Time 0.024 seconds

A Proposal for Damage Index of Steel Members under Cyclic Loading (반복하중하에서의 강부재에 대한 손상지수 제안)

  • Park, Yeon Soo;Kang, Dae Hung;Oh, Jung Tae;Choi, Dong Ho;Oh, Back Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.613-625
    • /
    • 2002
  • This paper aimed to investigate the damage process of steel parts experiencing failure under strong repeated loading. Likewise, a damage index using various factors related to the damage was proposed. An analysis method for evaluating the damage state was also developed. The damage assessment method focused on the local strain history at the cross-section of the heaviest concentration of deformation. Cantilever-type steel parts were analyzed under uniaxial load combined with a constant axial load, considering horizontal displacement history, Loading patterns and steel types were considered as the main parameters in analyzing the models. The effects of the parameters on the failure modes, deformation capacity, and damage process as seen from the analysis results were also discussed. Each failure process was compared as steel types. In addition, the failure of steel parts under strong repeated loading was determined according to loading. Results revealed that the state of the failure is closely related to the local plastic strain.

Review on Welding Technology and Welded Joint Strength of GT Membrane Type LNG Carrier (GT Membrane형 LNG선의 용접기술과 용접부 강도)

  • 한종만;한용섭
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.24-35
    • /
    • 1993
  • 이 글에서는 GT Membrane방식 LNG 선의 1,2차 Membrane 의 제작시의 용접기술 및 용접이음 부의 강도에 대하여 개략적으로 검토하였다. Membrane 재료인 Invar강은 그 적용두께가 매우 얇 은 박판이기 때문에 용접이음시 용락 및 용접결함등를 방지할 수 있는 용접기술 및 시공상의 고 려가 LNG선 전체의 안전성 측면에서 매우 중요하다고 할 수 있다. 또한 근본적으로 Membrane 부재는 구조강도를 부담하는 강도 부재는 아니라 하더라도 선체로부터 전달되는 하중은 필연적으 로 받게 되므로 이 하중에 의해 피로파괴가 발생하지 않도록 용접부의 적정 강도를 유지하는 것 이 중요하다.

  • PDF

Stability Design of Steel Frames considering Initial Imperfection based on Second-Order Elastic Analysis (2차 탄성해석을 이용한 강뼈대구조의 초기결함 좌굴설계)

  • Kyung, Yong Soo;Lee, Chang Hwan;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.465-474
    • /
    • 2008
  • Generally design of frame structures composed of beam-column member is accomplished by stability evaluation of each member considering the effective buckling length. This study selects a member of the smallest non-dimension slenderness ratio using the buckling eigenvalue calculated by the elastic buckling eigen-value analysis and axial force of the each member, and decides the initial deflection quantity reflected geometric and material nonlinearities from a suggested equation on the base of standard strength curve of Korea Bridge Design Code. Second-order elastic analysis applying the initial deflection is executed and the stability of each member is evaluated and decides ultimate strength. Through examples of eight-stories and four-stories plane frame structures, the evaluation of the stability is compared with the existing method and ultimate strength of the suggested method is compared with ultimate strength by the nonlinear inelastic analysis. Through these procedures, the increasing of effective buckling length by elastic buckling eigenvalue analysis is prevented from a new design method that considers initial imperfections. And the validity of this method is proved.

The Effectiveness of Steel Fibers as Shear Reinforcement (강섬유를 사용한 전단보강의 효율성)

  • Kal, Kyoung-Wan;Lee, Deuck-Hang;Bang, Yong-Sik;Cho, Hae-Chang;Kang, Ju-Oh;Kim, Kang-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.59-60
    • /
    • 2009
  • Steel fibers are recently well recognized for good composite/strengthening materials because of their ductile behavior and good performance on crack control and shear behavior compared to concrete materials. Especially, the great improvement in shear strength by steel fibers led researchers to be involved in many experimental studies. However, our understanding on the complex shear behavior of the steel fiber reinforced concrete(SFRC) members are still very limited, and the fundamental test data are also not enough. In this study, therefore, 4 SFRC specimens were fabricated and tested, from which the effectiveness of steel fibers as shear reinforcement were evaluated. The test results shows that the shear strength of SFRC members increases as the amount of steel fibers increases.

  • PDF

Automatic Design of Steel Frame Using Nonlinear Analysis (비선형 해석을 이용한 강뼈대구조물의 자동화설계)

  • Kim, Chang Sung;Ma, Sang Soo;Choi, Se Hyu;Kim, Seung Eock
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.339-348
    • /
    • 2002
  • The study developed an automatic design method of steel frames which uses nonlinear analysis. The geometric nonlinearity was considered using stability functions. Likewise, the transverse shear deformation effect in a beam-column was explained. A direct search method was used as an automatic design technique. The unit value of each part was evaluated using LRFD interaction equation. The member with the largest unit value was replaced one by one with an adjacent larger member selected from the database. The weight of the steel frame was considered as an objective function. On the other hand, load-carrying capacities, deflections, inter-story drifts, and ductility requirement were used as constraint functions. Case studies of a two-dimensional and a three-dimensional two-story frames were presented.

Fatigue Crack Growth Analysis by EFG Method in Steel Components with Multiple Cracks (EFG법을 사용한 다수균열 함유 강부재의 피로균열 성장거동 해석)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.691-700
    • /
    • 1999
  • 본 연구에서는 요소를 사용하지 않는 새로운 해석방법인 EFG(Element-Free Galerkin)법을 사용하여 복수의 초기균열을 지닌 강재가 반복피로하중을 받는 경우 균열들이 점진적으로 성장하여 부재가 파단에 이르는 과정을 해석적으로 규명하였다. 이를 위하여 본 연구에서는 일반적인 피로균열성장법칙을 EFG법을 이용한 균열해석 알고리즘에 적용하여 복수의 균열들이 각각의 응력상태에 따라 차별적으로 성장해 나가는 과정을 해석할 수 있는 알고리즘을 도입하고 이를 바탕으로 다양한 하중상태하에서 복수의 균열들의 성장경로를 추정함과 동시에 이에 따른 잔존수명을 산정할 수 있는 기법을 제시하였다. 본 연구에서 제안된 해석방법을 피로균열 발생빈도가 큰 몇가지의 강부재 형태에 적용해 본 결과 다수균열 함유 부재의 피로균열 성장거동과 균열들의 피로수명을 성공적으로 예측할 수 있었다.

  • PDF

Effect of Tamping Materials on the External Charge Blasting of Structural Members (부재 절단을 위한 외부장약 발파의 전색효과)

  • Yang, Hyung-Sik;Kim, Jung-Gyu;Ko, Young-Hoon;Rai, Piyush
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • External charges with four different kinds of tamping materials are tested to determine the effect of tamping on the blasting of steel components and concrete blocks. The tamping materials used are tamping cap, urethane foam, sand bag and mud. As a result, the tamping cap, urethane foam, and sand bag show no significant effect of tamping. But the mud tamping shows that the charge amount can be reduced by more than 20% in completely cutting the structural components. In addition, it is found from the test that the standard equation for calculating the proper charge is rather conservative, which means the equation overestimates the necessary charge for the blasting.

Shear Behavior of Prestressed Steel Fiber-Reinforced Concrete at Crack Interfaces (프리스트레스가 도입된 강섬유보강콘크리트의 균열면 전단거동)

  • Kal, Kyoung Wan;Hwang, Jin Ha;Lee, Deuck Hang;Kim, Kang Su;Choi, Il Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.78-88
    • /
    • 2012
  • Although structural concrete is well known for its good economic efficiency, it has limits of structural performance due to the low tensile strength, for which new structural members utilizing various concrete composite materials have been developed. Steel Fiber-Reinforced Concrete(SFRC) has great tensile strength, which is the one of the excellent composite material to complement the weakness of concrete, and it is also considered as a good alternative to prevent the explosive failure of high strength concrete under fire. Also, prestressed concrete members are of great advantages to long span structures and have greater shear strength compared to conventional reinforced concrete members. In this research, thus, a total of 22 direct shear test specimens were fabricated and tested to understand the shear behavior of Steel Fiber-Reinforced Prestressed Concrete(SFR-PSC) members, in which SFRC members combined with prestressing method. Based on the test results, the constitutive equations of shear behavior at crack interfaces were proposed, which provided good estimation on the shear behavior of the SFR-PSC direct shear test specimens.

Tests on Failure of Steel Angles due to Very Low-Cycle Fatigue of Loading (극저사이클 재하하에서 앵글 강부재의 파괴실험)

  • Park, Yeon Soo;Kim, Sung Chil;Lim, Jung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.23-32
    • /
    • 1992
  • The objective of this study is to identify the quantitative relationships among the important physical factors associated with failure of steel members under strong seismic excitations through very low-cycle fatigue tests. Very low-cycle fatigue is meant to be structural fatigue causing cracks and rupture in about 5~30 cycle ranges. The angle specimen was subjected to repeated axial Ioad after undergoing inelastic buckling. The test results reveal that the energy absorption capacities vary heavily with the history of loading and the failure mode. The maximum values of residual local strain at the initiation of a visible crack due to the very low-cycle fatigue were of the order of 25~40%, regardless of loading patterns, deflection modes, and width-to-thickness ratios.

  • PDF

Vibration-based Damage Monitoring Scheme of Steel Girder Bolt-Connection Member by using Wireless Acceleration Sensor Node (무선 가속도 센서노드를 이용한 강 거더 볼트연결 부재의 진동기반 손상 모니터링 체계)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • This study propose the vibration-based damage monitoring scheme for steel girder bolt-connection member by using wireless acceleration sensor node. In order to achieve the objective, the following approaches are implemented. Firstly, wireless acceleration sensor node is described on the design of hardware components and embedded operation software. Secondly, the vibration-based damage monitoring scheme of the steel girder bolt-connection member is described. The damage monitoring scheme performed global damage occurrence alarming and damage localization estimation by the acceleration response feature analysis. The global damage alarming is applied to the correlation coefficient of power spectral density. The damage localization estimation is applied to the frequency-based damage detection technique and the mode-shape-based damage detection technique. Finally, the performance of the vibration-based damage monitoring scheme is evaluated for detecting the bolt-connection member damage on a lab-scale steel girder.