• Title/Summary/Keyword: 강화플라스틱

Search Result 383, Processing Time 0.025 seconds

On the Standardization of FRP Ships for the Cooperative Production System (강화플라스틱선의 협동화 생산시스템 운용을 위한 표준화 연구)

  • Na, Seung-Soo;Kim, Young-Hun;Kim, Keun-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.276-283
    • /
    • 2005
  • The cooperative production system was proposed as an efficient production system to reduce the ship construction cost and to enhance the competitiveness for small/medium sized shipbuilder in the previous paper. In viewpoint of cooperative production system, the specialization of the FRP ship sizes has already been accomplished to reduce the number of the hull molds by FRP shipbuilders of the Sapjin industrial complex located in Mokpo area in 2003. There also exist lots of effective methods, as a cooperative production system, to cut down the construction cost. In this study, an effective production system in connection with the super structure and outfitting members is proposed such as the standardization of those items and specialized company which intensively produces the super structure and outfitting members at the collectivization area for cooperative work.

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.

Hull Strength Evaluation of Dissemination 12ft Bass Fishing Boat Using FEA (보급형 12피트 배스 낚시보트의 유한요소해석을 통한 선체강도평가)

  • Oh, Young-Cheol;Ko, Jae-Yong;Chung, Se-Yun;Choi, Jeong-Hwan;Kim, Hyeon-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.225-226
    • /
    • 2012
  • Recently, In the domestic is used mainly fiberglass reinforced plastic(GRP) and is built for maritime leisure vessel & structures. but it less attention is insufficient for ship of structural strength assessment of maritime leisure vessel. Therefore, The structural strength evaluation suitable for the domestic situation formulate and is applied to domestic regulations of "Guidance for Recreational Crafts" of Korea register of shipping(KR) & "Reinforced plastic line structure standards" of Ministry of Land, Transport and Maritime Affairs. the structural design and finite element analysis(FEA) to ensure the reliability.

  • PDF

Test and Finite Element Analysis on Compression after Impact Strength for Laminated Composite Structures of Unidirectional CFRP (일방향 탄소섬유강화 플라스틱 복합재 적층구조의 충격 후 압축강도 시험 및 유한요소해석)

  • Ha, Jae-Seok
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.321-327
    • /
    • 2016
  • In this study, tests and finite element analyses were performed regarding compression after impact strength for laminated composite structures of unidirectional carbon fiber reinforced plastic widely used in structural materials. Two lay-up sequences of composite laminates were selected as test specimens and four impact energy conditions were applied respectively. Impact and compressive strength tests were conducted in accordance with ASTM standards. Impact damages in test specimens were analyzed by using non-destructive inspection method of C-Scan, and compression after impact strengths were calculated with compressive test results. Progressive failure analysis method that can progressively simulate damages and fractures of fiber/matrix/lamina/laminate level was used for impact and compressive strength analyses. All analysis results including contact force, deflection, impact damages, compressive strengths, etc. were compared to test results, and the validity of analysis method was verified.

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

In the examination of PET/CT, Breast-tool production and availability of using FRP to check for breast disease. (양전자방출전산화단층촬영 검사에서 유방 질환 환자를 검사하기 위해 유리섬유강화플라스틱을 이용한 유방 틀의 제작 및 유용성)

  • Kim, Gab-Jung;Jeon, Min-Cheol;Han, Man-Seok;Seo, Sun-Youl;Kim, Nak-Sang;Bae, Won-Gyu
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.175-181
    • /
    • 2017
  • The purpose of this study is to evaluate the breast tool to improve the diagnostic value of the image in the breast examination. Breast tool was made of using FRP. And then it was compared by radioactivity counting rate and image. In the evaluation of the Breast tool, the left and right counts per $1{\mu}Ci$ are 185 counts and 189 counts, respectively. The image obtained in the prone position was close to the circle. To increase diagnostic value of image, it is considered to use Breast-tool in the breast examination.

Mechanical properties of sheet molding compounds (SMC) with different size and contents of ground calcium carbonate (중질 탄산칼슘의 입자크기 및 첨가량 변화에 따라 제조된 시트몰딩 컴파운드(SMC)의 기계적 특징)

  • Lee, Yoonjoo;Koh, Kwang-Woon;Kwon, Woo-Teck;Kim, Younghee;Shin, Dong-Geun
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.84-91
    • /
    • 2017
  • Fiber reinforced plastic (FRP) is a typical plastic composite which is fabricated using fiber reinforcement with resin to represent the high strength properties. The mechanical properties of FRP should be determined by a fibrous material, and the studies about the role of fiber as a reinforcement has been an interested subject, whereas a study along the effect of filler is not so big. However, the filler effect must be considered on the properties of the composite, because the filler influence on the plastic or resin compound which reacts as a matrix material of the composite. Thus, in this work, we studied the filler effect with size and content using $3-6{\mu}m$ of ground calcium carbonate. The specimen was prepared by sheet molding compound (SMC) method, and the mechanical properties were compared with bending strength and tensile strength. As a result, it was confirmed that the size and contents of calcium carbonate affected the strength of composites, and the condition of $2.8{\mu}m$ which was the smallest size condition showed the highest strength.

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.