• Title/Summary/Keyword: 강자성 공명 신호

Search Result 14, Processing Time 0.028 seconds

Size Dependence of FMR Linewidth in Iron Oxide Nanoparticles (산화철 나노입자의 크기에 따른 강자성 공명 신호의 선폭 특성)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • We measured the ferromagnetic resonance (FMR) signal using the monodisperse iron oxide nanoparticles with size D=4.67 nm, 5.64 nm and 6.34 nm synthesized by using the thermal decomposition method, respectively. The measured ferromagnetic resonance signals were compared with the calculated ones for superparamagnetic nanoparticles with lognormal volume distribution. The FMR linewidth broadening was propositional to tanh($V^2$), where V was volume of nanoparticles. The narrow linewidth of small size nanoparticles was due to the surface spins, while the broad linewidth of large size nanoparticles was due to the bulk spins affected by the crystalline structure of iron oxide nanoparticles. The superposition of surface and bulk effect was confirmed at D=5.64 nm nanoparticles, which was near the critical size for linewidth transition from surface effect to bulk effect.

Analysis of Ferromagnetic and Spin Wave Resonance Signals in CoFeB Thin Films (CoFeB 박막 재료에서 강자성 및 스핀파 공명 신호 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.165-170
    • /
    • 2014
  • We analyzed the ferromagnetic and spin wave resonance signals measured in amorphous CoFeB thin films with different thickness. The ferromagnetic resonance field ($H_{FMR}$) was not depend on the thickness of CoFeB films, but the spin wave resonance field ($H_{SWR}$) was well fitted with the theoretical prediction depending on the thickness. The uniaxial anisotropy field of $H_k$ = 37 Oe was obtained from the angular dependent $H_{FMR}$ in CoFeB films. The $H_{SWR}$ showed same angular behaviors with $H_{FMR}$, however, the amplitude of spin wave resonance signals showed 5.7 times higher than that of ferromagnetic resonance signals in CoFeB film with t = 100 nm. The higher signals were due to the two reasons; one was the small damping for the spin wave propagation without degradation, the other was uniform magnetization for the ideal standing wave modes.

Analysis of Low Field Microwave Absorption Properties in CoFe/MnIr Thin Film (CoFe/MnIr 박막 재료에서 저자장 마이크로파 흡수 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.74-78
    • /
    • 2015
  • We measured the low field microwave absorption (LFMA) and ferromagnetic resonance (FMR) signals at various magnetic field angle in exchange biased CoFe/MnIr thin film. The LFMA signals were dominantly related to the magnetization rotation process. In order to analyze the LFMA signal, we calculated transverse magnetization ($M_{\tau}$) and permeability (${\mu}_{\tau}$) for CoFe/MnIr thin film by using S-W model, which magnetic parameters of exchange bias ($H_{ex}$ = 58.5 Oe) and uniaxial anisotropy field ($H_k$ = 30Oe) was obtained from FMR signals. The LFMA signal at hard axis showed similar behavior compared with that of $M_{\tau}$. As the magnetic field angle approach to the perpendicular to hard axis, the LFMA signals were depending on both of $M_{\tau}$ and ${\mu}_{\tau}$.

Thermal Annealing Effect on Ferromagnetic Resonance Properties in CoFeB/MgO Thin Film (CoFeB/MgO 박막 재료의 열처리에 따른 강자성공명 특성)

  • Yoon, Seok-Soo;Kim, Dong-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.10-14
    • /
    • 2011
  • We have measured the ferromagnetic resonance (FMR) signal in as deposited and $400^{\circ}C$ annealed CoFeB/MgO thin film to investigate the annealing effect on magnetic anisotropies and FMR linewidth (${\Delta}H_{PP}$). The uniaxial anisotropy field ($H_{K1}$) was only observed in the as deposited sample. Whereas, in the $400^{\circ}C$ annealed sample, the biaxial anisotropy field ($H_{K2}$) was additionally observed in accompany with uniaxial anisotropy field ($H_{K1}$). The appearance of biaxial anisotropy fields was originated from the crystalline growth of bcc CoFeB(001) from the MgO(001) interface and by the B diffusion during thermal annealing. Also, the ${\Delta}H_{PP}$ of $400^{\circ}C$ annealed sample was increased compared with that of as deposited sample, which was due to the broad distribution of the magnetization axis by the biaxial anisotropy.

Assessment of Magnetic Resonance Image Quality For Ferromagnetic Artifact Generation: Comparison with 1.5T and 3.0T. (강자성 인공물 발생에 대한 자기공명영상 질 평가: 1.5T와 3.0T 비교)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.193-199
    • /
    • 2018
  • In this research, 15 patients were diagnosed with 1.5T and 3.0T MRI instruments (Philips, Medical System, Achieva) to minize Ferromagnetic artifact and find the optimized Tesla. Based on the theory that the 3.0T, when compared to 1.5T, show relatively high signal-to-ratio(SNR), Scan time can be shortened or adjust the image resolution. However, when using the 3.0T MRI instruments, various artifact due to the magnetic field difference can degrade the diagnostic information. For the analysis condition, area of interest is set at the background of the T1, T2 sagittal image followed by evaluation of L3, L4, L5 SNR, length of 3 parts with Ferromagnetic artifact, and Histogram. The validity evaluation was performed by using the independent t test. As a result, for the SNR evaluation, mere difference in value was observed for L3 between 1.5T and 3.0T, while big differences were observed for both L4, and L5(p<0.05). Shorter length was observed for the 1.5T when observing 3 parts with Ferromagnetic artifact, thus we can conclude that 3.0T can provide more information on about peripheral tissue diagnostic information(p<0.05). Finally, 1.5T showed higher counts values for the Histogram evaluation(p<0.05). As a result, when we have compared the 1.5T and 3.0T with SNR, length of Ferromagnetic artifact, Histogram, we believe that using a Low Tesla for Spine MRI test can achieve the optimal image information for patients with disk operation like PLIF, etc. in the past.

Synthesis of Monodisperse Iron-oxide Nanoparticles from Fe(acac)3 Precursor (Fe(acac)3 전구체를 사용한 균일한 산화철 나노입자 제조)

  • Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.18-21
    • /
    • 2014
  • The microwave absorption ($P_{tot}$), which is the double integration value of ferromagnetic resonance signal, propositional to the saturation magnetization, and the increase of the $P_{tot}$ measured during the thermal reaction time expect the growth process of the nanoparticles. Therefore, in this work, we measured the $P_{tot}$ in order to obtain the growth time of iron oxide nanoparticles after thermal decomposition of $Fe(acac)_3$ precursor at aging temperature $T_a=273$, 300 and $324^{\circ}C$, respectively. The best condition for monodisperse nanoparticles was obtained at $T_a=300^{\circ}C$, which condition showed the most rapid increase of $P_{tot}$ with thermal reaction time. Finally, the rapid growth rate was necessary condition for the synthesis of iron-oxide monodisperse nanoparticles.

Ferromagnetic Resonance Study of an YIG Thin Film Grown by LPE Method (LPE법으로 제조한 YIG 박막에 대한 강자성공명 연구)

  • 이수형;염태호;윤달호;김약연;한기평;이상석
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.85-90
    • /
    • 1999
  • The ferromagnetic resonance study of the magnetostatic wave modes for an YIG thin film, grown by a liquid phase epitaxy method, was performed by an FMR spectrometer at room temperature. The magnetostatic surface wave and backward volume wave modes show periodic excitations in parallel configuration, whereas the complex spectra were observed in perpendicular configuration. The resonance spectra in parallel configuration can be well explained by the Walker and Damon-Eshbach theory. The peak-peak line width of uniform mode was 0.4 Oe. The saturation magnetization $M_s$ of the YIG thin film was calculated as 137 emu/㎤. In order to know the dependence of the magnetostatic modes as a function of the saturation magnetization and the thickness, the (1,1) and (3,1) modes of the magnetostatic backward volume wave were compared and theoretically calculated.

  • PDF

Analysis of Ferromagnetic Resonance Linewidth in Ni Thin Film Fabricated by Electrodeposition Method (전기 도금법으로 제작한 Ni 박막의 강자성 공명 선폭 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.60-65
    • /
    • 2014
  • We obtained resonance field ($H_{res}$) and linewidth (${\Delta}H_{PP}$) from measured ferromagnetic resonance signal in the functions of polar angle (${\Theta}_H$) in Ni thin film of 240 nm thickness fabricated by electrodeposition method. The angular dependence of $H_{res}$ was well fitted with the calculated ones. We confirmed that the g-factor and effective demagnetization field were 2.18 and 445 emu/cc by the theoretical analysis of the resonance field, respectively. The angular dependence of ${\Delta}H_{PP}$ showed very large values at in-plane direction (${\Theta}_H=90^{\circ}$), which could not explained by the homogenous linewidth due to the Gilbert damping and inhomogeneous linewidth due to the angular variations and magnetization variations by the surface layer. Therefore, we considered the spin wave scattering (two magnon scattering) process in order to analyze the measured inhomogeneous linewidth, which was appeared in thicker film than the critical thickness of 50 nm. The defect medicated spin wave scattering played a key role in the electrodoposited Ni thin film of 240 nm thickness.