• Title/Summary/Keyword: 강인한 제어기

Search Result 806, Processing Time 0.03 seconds

Design of Robust Fuzzy Controller for Load-Frequency Control of Power Systems Using Intelligent Digital Redesign Technique (지능형 디지털 재설계 기법을 이용한 전력 계통의 부하 주파수 제어를 위한 강인한 퍼지 제어기 설계)

  • Joo, Young-Hoon;Jeo, Sang-Won;Kwon, Oh-Sin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.357-367
    • /
    • 2000
  • A new robust load-frequency control methodology is proposed for nonlinear power systems with valve position limits of the governor in the presence of parametric uncertaines. The TSK fuzzy model is adopted and formulated for fuzzy modeling of the nonlinear power system. A sufficient condition of the robust stabilitry is presented in the sense of lyapunov for the TSK model with parametric uncertainties. The intekkigent digital redesign technique for the uncertain power systems is also studied. The effectiveness of the robust digital fuzzy controller disign mothod is demonstrated through a numerical simulation.

  • PDF

Robust Position Control of DC Motor Using Neural Network Sliding Mode Controller (신경망 슬라이딩 모드 제어기를 이용한 직류 전동기의 강인한 위치제어)

  • 전정채;최석호;박왈서
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.122-127
    • /
    • 1998
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. The sliding mode control has robustness, but the discontinuous control law in sliding mode control with robustness leads to undesirable chattering in practice. As a method solving this problem, in this paper, neural network sliding mod control method for motor control system is presented. The proposed controller effectively can eliminate load disturbance without chattering. The effectiveness of the control scheme is verified by simulation results.

  • PDF

Field Driveability Test of Wide Hat-type Sheet Pile using Vibro-Hammer (바이브로해머를 이용한 광폭 Hat형 강널말뚝의 현장 관입시험)

  • Kim, Byoung-Il;Kim, Jae-Kyu;Back, In-Chul;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.103-109
    • /
    • 2007
  • A new steel sheet pile of wide hat-type was developed. Advantage of using wide type of sheet pile is reducing steel weight and consequently cutting down construction cost. Field driveability tests were conducted in order to verifying vibro-driveability of wide hat-type sheet pile. As a result of the tests, penetration rates of newly developed sheet piles were less than those of U-type sheet piles. Axial stresses developed in sheet pile during driving were fur less than yield stress of sheet pile. Futhermore, initial penetration rates of sheet piles were much larger than those obtained from WEAP program.

  • PDF

Robust PI controller and stability analysis for STATCOM system (STATCOM 시스템에 대한 강인 PI 제어기 설계 및 안정성 분석)

  • Kang, Hyun-Jae;Han, Young-Seong;Lee, Young-Ok;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.254_255
    • /
    • 2009
  • 본 논문에서는 비선형 특성의 STATCOM 시스템에 대해 강인한 PI 제어기를 설계하였다. 설계된 PI 제어기는 불확실성 변수에 대해 모든 동작 점에서 항상 안정하다는 것을 보드선도, 게인, 위상 여유, Nyquist 선도를 통해 검증하였다.

  • PDF

Lyapunov Based Stability Analysis and Design of A Robust High-Gain Observer (강인한 고이득 관측기 설계 및 안정성 해석)

  • Yu, Sung-Hoon;Hyun, Chang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.8-15
    • /
    • 2010
  • This paper proposes a robust high-gain observer design scheme for nonlinear systems and its stability is analyzed based on Lyapunov theory. It is assumed that their states are unmeasurable. The proposed high-gain observer has the integrator of the estimation error in dynamics. It improves the performance of high-gain observers and makes the proposed observer robust to noisy measurements, uncertainties and peaking phenomenon as well. Its stability is analyzed by the Lyapunov approach. In order to verify the effectiveness of the proposed scheme, it is applied to output feedback controllers and some comparative simulation result with the existed observer based output feedback controllers and state feedback controllers is given.

Design of Current Controller for an Induction Motor using Robust Stability Theory (강인안정도 기법을 이용한 유도전동기의 전류 제어기 설계)

  • 박태식;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • In this paper, the new robust current control scheme is proposed for an Induction motor. The proposed design scheme of current controller tan obtain a specified stability margin through electrical parameter variation by using Kharitonov robust stability theory. The characteristics of the proposed design scheme are compared with those of a conventional scheme by computer simulation and its effectiveness and usefulness is verified by experiments on the 0.75kW induction motor drive.

Robust Control of Permanent Magnet Synchronous Motor Using Disturbance Observer and Sliding Mode Controller (외란관측기와 슬라이딩 모드 제어기를 이용한 영구자석 동기전동기의 강인제어)

  • Lee, Youn-kyu;Ahn, Ho-gyun;Yoon, Tae-sung;Kwak, Gun-pyong;Park, Seung-kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1660-1670
    • /
    • 2015
  • Many robust controllers have been studied but most are considered in the theoretical point of view and can be used for only specific systems. So, in this paper, a more practical robust controller is proposed based on SMC(sliding mode control) and disturbance observer. The integral sliding mode is used to eliminate the reaching phase and minimizes the steady-state error, and the disturbance observer reduces the chattering due to the switching input for the bounded disturbances. The inevitable chattering of SMC is also removed by replacing the sign function with dead-zone function. The proposed controller has the improved steady-state error and robustness compared to PID controller.

Design of a Digital Robust Control Using Observer for Manipulator (관측기를 이용한 강인한 디지털 로보트제어)

  • 이보희;김진걸
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2353-2363
    • /
    • 1994
  • This paper is concerned with the design of a robust digital controller using reduced-order observer on a robotic manipulator under the disturbance. In most cases of robotic manipulator since all state vectors are not measurable, the unmeasurable state vectors must be estimated or reconstructed. Other problems are caused by the nonlinear element like as nondifferentiable Coulomb friction, disturbance due to the gravitational pull, and the torsional spring effect of a link between the drive motor and the manipulator arm. The controller is based on feeding back the observable variables and the estimated state variables which are generated by the observer, and augmenting the system by additional discrete integrators. The feedback gain parameters are obtained by first applying the optimal control theory and then readjusting the feedback parameters to eliminate the limit cycle by using describing Function for nonlinear hybrid system.

  • PDF

Design and Implementation of a Robust Controller Using DSP (DSP를 이용한 강인 제어기의 설계 및 구현)

  • Yeo Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.325-331
    • /
    • 2006
  • This paper suggests the design methodology of a robust controller based on disturbance rejection controller using DSP. In this paper, we discuss process to put the disturbance rejection controller into practice, and examine the performance of disturbance rejection controller by implementing it on DSP based hardware to evaluate usefulness of controller. As a result, the proposed robust controller can not only stabilize system against disturbance ,but it improve controlling performance. And also, it shows convenient to put into practical use of industrial sites due to its easy implementation on the hardware.

  • PDF

Robust Positioning Control of a Flexible beam using $H_2/H_{\infty}$ and $\mu$-theory ($H_2$/H$\infty$$\mu$이론을 이용한 유연 빔의 위치제어)

  • 최연욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.101-107
    • /
    • 2001
  • The objective of this paper is to present a method for designing robust positioning control systems of a flexible arm using mixed $H_2/H_{\infty}$ and $\mu$ theory. We begin with a description of the flexible arm based on the model identification method and discuss the derivation of the model uncertainty. The validity of the obtained model is confirmed experimentally. Next, a robust controller is designed based on the mixed $H_2/H_{\infty}$ and $\mu$ theory by which we can improve robustness of the entire system. On this occasion, we also propose a general plant formation suitable to mixed $H_2/H_{\infty}$ control and $\mu$-theory. Finally, the effectiveness of the proposed design method is verified through experimentation.

  • PDF