• Title/Summary/Keyword: 강우 자료

Search Result 2,867, Processing Time 0.037 seconds

A Six-Layer SVAT Model for Energy and Mass Transfer and Its Application to a Spruce(Picea abies [L].Karst) Forest in Central Germany (독일가문비나무(Picea abies [L].Karst)림(林)에서의 Energy와 물질순환(物質循環)에 대(對)한 SLODSVAT(Six-Layer One-Dimensional Soil-Vegetation-Atmosphere-Transfer) 모델과 그 적용(適用))

  • Oltchev, A.;Constantin, J.;Gravenhorst, G.;Ibrom, A.;Joo, Yeong-Teuk;Kim, Young-Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.210-224
    • /
    • 1996
  • The SLODSVAT consists of interrelated submodels that simulate : the transfer of radiation, water vapour, sensible heat, carbon dioxide and momentum in two canopy layers determined by environmental conditions and ecophysiological properties of the vegetation ; uptake and storage of water in the "root-stem-leaf" system of plants ; interception of rainfall by the canopy layers and infiltration and storage of rain water in the four soil layers. A comparison of the results of modeling experiments and field micro-climatic observations in a spruce forest(Picea abies [L].Karst) in the Soiling hills(Germany) shows, that the SLODSVAT can describe and simulate the short-term(diurnal) as well as the long-term(seasonal) variability of water vapour and sensible heat fluxes adequately to natural processes under different environmental conditions. It proves that it is possible to estimate and predict the transpiration and evapotranspiration rates for spruce forest ecosystems on the patch and landscape scales for one vegetation period, if certain meteorological, botanical and hydrological information for the structure of the atmospheric boundary layer, the canopy and the soil are available.

  • PDF

Development of Multi-Site Daily Rainfall Simulation Based on Homogeneous Hidden Markov Chain Model Coupled with Chow-Liu Tree Structures (Chow-Liu Tree 모형과 동질성 Hidden Markov Model을 연계한 다지점 일강수량 모의기법 개발)

  • Kwon, Hyun-Han;Kim, Tae Jeong;Kim, Oon Ki;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.10
    • /
    • pp.1029-1040
    • /
    • 2013
  • This study aims to develop a multivariate daily rainfall simulation model considering spatial coherence across watershed. The existing Hidden Markov Model (HMM) has been mainly applied to single site case so that the spatial coherences are not properly addressed. In this regard, HMM coupled with Chow-Liu Tree (CLT) that is designed to consider inter-dependences across rainfall networks was proposed. The proposed approach is applied to Han-River watershed where long-term and reliable hydrologic data is available, and a rigorous validation is finally conducted to verify the model's capability. It was found that the proposed model showed better performance in terms of reproducing daily rainfall statistics as well as seasonal rainfall statistics. Also, correlation matrix across stations for observation and simulation was compared and examined. It was confirmed that the spatial coherence was well reproduced via CLT-HMM model.

Drought Risk Analysis Using Stochastic Rainfall Generation Model and Copula Functions (추계학적 강우발생모형과 Copula 함수를 이용한 가뭄위험분석)

  • Yoo, Ji Young;Shin, Ji Yae;Kim, Dongkyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.425-437
    • /
    • 2013
  • This study performed the bivariate drought frequency analysis for duration and severity of drought, using copula functions which allow considering the correlation structure of joint features of drought. We suggested the confidence intervals of duration-severity-frequency (DSF) curves for the given drought duration using stochastic scheme of monthly rainfall generation for 57 sites in Korea. This study also investigated drought risk via illustrating the largest drought events on record over 50 and 100 consecutive years. It appears that drought risks are much higher in some parts of the Nakdong River basin, southern and east coastal areas. However, such analyses are not always reliable, especially when the frequency analysis is performed based on the data observed over relatively short period of time. To quantify the uncertainty of drought frequency curves, the droughts were filtered by different durations. The 5%, 25%, 50%, 75%, and 95% confidence intervals of the drought severity for a given duration were estimated based on the simulated rainfall time series. Finally, it is shown that the growing uncertainties is revealed in the estimation of the joint probability using the two marginal distributions since the correlation coefficient of two variables is relatively low.

A study on simplification of SWMM for prime time of urban flood forecasting -a case study of Daerim basin- (도시홍수예보 골든타임확보를 위한 SWMM유출모형 단순화 연구 -대림배수분구를 중심으로-)

  • Lee, Jung-Hwan;Kim, Min-Seok;Yuk, Gi-Moon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.81-88
    • /
    • 2018
  • The rainfall-runoff model made of sewer networks in the urban area is vast and complex, making it unsuitable for real-time urban flood forecasting. Therefore, the rainfall-runoff model is constructed and simplified using the sewer network of Daerim baisn. The network simplification process was composed of 5 steps based on cumulative drainage area and all parameters of SWMM were calculated using weighted area. Also, in order to estimate the optimal simplification range of the sewage network, runoff and flood analysis was carried out by 5 simplification ranges. As a result, the number of nodes, conduits and the simulation time were constantly reduced to 50~90% according to the simplification ranges. The runoff results of simplified models show the same result before the simplification. In the 2D flood analysis, as the simplification range increases by cumulative drainage area, the number of overflow nodes significantly decreased and the positions were changed, but similar flooding pattern was appeared. However, in the case of more than 6 ha cumulative drainage area, some inundation areas could not be occurred because of deleted nodes from upstream. As a result of comparing flood area and flood depth, it was analyzed that the flood result based on simplification range of 1 ha cumulative drainage area is most similar to the analysis result before simplification. It is expected that this study can be used as reliable data suitable for real-time urban flood forecasting by simplifying sewer network considering SWMM parameters.

Predicting Water Movement in the Soil Profile of Corn Fields with a Computer-Based STELLA Program to Simulate Soil Water Balance (토양수분 수지계산에 의한 옥수수 포장에서의 토양수분 이동 예측)

  • Kim, Won-Il;Jung, Goo-Bok;Lee, Jong-Sik;Kim, Jin-Ho;Shin, Joung-Du;Kim, Gun-Yeob;Huck, M.G.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.222-229
    • /
    • 2005
  • A simplified one-dimensional model STELLA was used to predict soil water movement in lllinois corn fields using soil water balance sheets. It offered the potential to increase understanding of soil nitrate and agrochemical leaching process. The model accounted for aU possible annual inputs and outputs of water from a closed ecosystem as represented by corn fields. Water inputs included precipitation, while outputs included runoff, transpiration, evaporation and drainage. To run the model required daily inputs of two climatic data measurements such as daily precipitation and pan evaporation. Vertical water flow through the soil profile was calculated with first order equation including the difference in hydraulic conductivity and matric potential at the various soil types. The output results included daily changes of water content in the soil layers and daily amount of water losses including run-off, percolation, transpiration. This model was verified using Illinois corn field data for the soil water content measured by neutron scattering methods through 1992 to 1994 growing seasons. Approximately 22 to 78% of simulated water contents agreed with the measured values and their standard deviation, depending on soil types, whereas 30 to 70% of simulated water values agreed with the measured values and their standard deviations depending on soil layers.

Relationship between Tropical Cyclone Intensity and Physical Parameters Derived from TRMM TMI Data Sets (TRMM TMI 관측과 태풍 강도와의 관련성)

  • Byon, Jae-Young
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.359-367
    • /
    • 2008
  • TRMM TMI data were used to investigate a relationship between physical parameters from microwave sensor and typhoon intensities from June to September, 2004. Several data such as 85GHz brightness temperature (TB), polarization corrected temperature (PCT), precipitable water, ice content, rain rate, and latent heat release retrieved from the TMI observation were correlated to the maximum wind speeds in the best-track database by RSMC-Tokyo. Correlation coefficient between TB and typhoon intensity was -0.2 - -0.4 with a maximum value in the 2.5 degree radius circle from the center of tropical cyclone. The value of correlation between in precipitable water, rain, latent heat, and typhoon intensity is in the range of 0.2-0.4. Correlation analysis with respect to storm intensity showed that maximum correlation is observed at 1.0-1.5 degree radius circle from the center of tropical cyclone in the initial stage of tropical cyclone, while maximum correlation is shown in 0.5 degree radius in typhoon stage. Correlation coefficient was used to produce regressed intensities and adopted for typhoon Rusa (2002) and Maemi (2003). Multiple regression with 85GHz TB and precipitable water was found to provide an improved typhoon intensity when taking into account the storm size. The results indicate that it may be possible to use TB and precipitable water from satellite observation as a predictor to estimate the intensity of a tropical cyclone.

Prospect of extreme precipitation in North Korea using an ensemble empirical mode decomposition method (앙상블 경험적 모드분해법을 활용한 북한지역 극한강수량 전망)

  • Jung, Jinhong;Park, Dong-Hyeok;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.671-680
    • /
    • 2019
  • Many researches illustrated that the magnitude and frequency of hydrological event would increase in the future due to changes of hydrological cycle components according to climate change. However, few studies performed quantitative analysis and evaluation of future rainfall in North Korea, where the damage caused by extreme precipitation is expected to occur as in South Korea. Therefore, this study predicted the extreme precipitation change of North Korea in the future (2020-2060) compared to the current (1981-2017) using stationary and nonstationary frequency analysis. This study conducted nonstationary frequency analysis considering the external factors (mean precipitation of JFM (Jan.-Mar.), AMJ (Apr.-Jun.), JAS (Jul.-Sept.), OND (Oct.-Dec.)) of the HadGEM2-AO model simulated according to the Representative Concentration Pathway (RCP) climate change scenarios. In order to select external factors that have a similar tendency with extreme rainfall events in North Korea, the maximum annual rainfall data was obtained by using the ensemble empirical mode decomposition (EEMD) method. Correlation analysis was performed between the extracted residue and the external factors. Considering selected external factors, nonstationary GEV model was constructed. In RCP4.5, four of the eight stations tended to decrease in future extreme precipitation compared to the present climate while three stations increased. On the other hand, in RCP8.5, two stations decreased while five stations increased.

Analysis of Secular Change Using Eddy Covariance Method in Yongdam Experimental Catchment (에디공분산 방법을 이용한 용담시험유역의 증발산량 경년변화 분석)

  • Moon, Duck Young;Lim, Kwang-Suop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.209-210
    • /
    • 2016
  • 우리나라의 연평균강수량은 약 1362 mm이며, 총강수량의 약 30% 이상이 증발산을 통해 손실되고 있다고 추정되어지고 있다. 증발산은 물 수지 분석에 있어 매우 중요한 성분이며, 많은 부분을 차지하지만 다른 요인들에 비해 직접적인 관측이 어려워 과거에는 경험식을 사용하거나 단순하게 가정에 의해 결정해 왔다. 또한 기상자료로부터 증발산량을 추정하거나 증발접시나 추정식으로 잠재증발산을 추정하고 있다. 또한 최근 기후변화의 가속화에 따른 홍수의 가뭄의 강도와 빈도가 높아지고 있으며, 이에 따라 수자원 관리에 있어서 기초수문조사 항목에 많은 변화를 요구하고 있다. 그 결과 2007년 4월 하천법 개정으로 증발산량 및 토양수분량이 기초수문조사 항목으로 추가되었으며, K-water 연구원에서는 용담시험유역에 플럭스타워를 설치하였고 현재 운영 중에 있다. 덕유산 플럭스타워는 용담시험유역 내에 위치한 금강 수계 구량천 상류부의 덕곡제 유역 내에 설치하였으며, 2011년 4월부터 실제 증발산량을 관측하고 있다. 동경 $127^{\circ}$42'23" ~ $127^{\circ}$44'53", 북위 $35^{\circ}$50'47" ~ $35^{\circ}$52'50"사이로 중부지방에 위치한 유일한 증발산관측 타워이다. 유역 면적은 9.27 km2으로 유로연장 3.48 km, 유역 평균폭 2.66 km, 형상계수는 0.77이며, 덕곡제플럭스 타워 주변의 토지이용은 대부분 산림으로 구성되어 있으며, 침활 혼효림과 낙엽송림으로 임상 분포가 이루어져 있다. 주요 관측기기로는 3차원 풍향 풍속계, $CO_2/H_2O$ 기체분석기, 순복사 측정 센서, 지중열플럭스 측정 센서 등이 있다. 2011년부터 측정된 자료를 바탕으로 에디공분산 방법을 이용하여 증발산량을 측정하였으며, 30분간의 데이터 18,000개 중 취득률 90 % 이상의 데이터를 대상을 분석을 실시하였다. 2011 ~ 2015년도 증발산량 분석 결과는 아래의 표와 같다. 증발산의 패턴은 1월부터 서서히 증가하지만 활발하지는 않고, 4월부터 매우 활발해져 8월에 최대치에 이른다. 10월부터 증발산량은 급격히 감소하기 시작하며 11, 12월에는 증발산이 거의 발생하지 않는 공통적인 경향을 보였다. 2013년 8, 9월은 다른 해와 다른 경향을 보이고 있는데, 이는 2013년 8, 9월에 강우가 많이 발생하여 증발산량이 감소하였기 때문으로 판단된다. 2015년 8월은 다른 년도와 비교했을 때, 매우 높은 증발산량을 보이는데 이는 2015년 8월에 많은 강우에도 식생이 활발하게 작용하였기 때문으로 판단된다.

  • PDF

Application and Establishment of Corresponding Criterion for Municipalities of Flood Damage Reduction (지자체 중심의 홍수피해 저감을 위한 홍수대응기준 수립 및 활용)

  • Kim, Mi Eun;Oh, Byoung Dong;Kim, Jin Woo;Chae, Mi Ae;Hong, Se Yeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.371-371
    • /
    • 2019
  • 우리나라는 홍수기(6~9월)에 집중되는 기상패턴과 하천 중하류부에 발달된 도시의 개발특성으로 인하여 가장 중요한 자연재해 중 하나로 홍수 및 도시침수가 거론되고 있다. 과거 집중호우로 침수 피해가 발생한 사례를 살펴보면, 피해가 발생하는 지역은 지방하천 및 소하천을 중심으로 형성된 도시지역이다. 중앙 지방 정부는 수차례 침수 피해를 겪으며 사후관리가 아닌 재난예방 및 사전관리 등의 방안 마련을 강조하고 있다. 하지만 기후변화에 의한 기상의 불확실성으로 치수 중심의 물관리 및 중 소하천의 하천 특성으로 여전히 홍수 발생에 대비할 수 있는 골든타임 확보 등에 어려움을 겪고 있다. 이러한 어려움을 극복하기 위해 사전 예방적 차원에서의 홍수대응 방안으로 중 소하천을 담당하는 지자체 중심의 홍수피해 저감 방안이 필요하다. 본 연구에서는 A 지자체를 대상으로 모니터링 대상 경계를 설정하여 우량 알람 기준을 예비알람, 주요 관측지점에 대해 강우에 따른 수위 상승 정도를 홍수대응 기준인 직접알람과 연계함으로써 예방적 재난대응 체계를 구축하였다. 모니터링 대상 지역은 해당 지자체를 포함하면서 유역 개념을 적용하여 만경강유역 전체로 설정하였다. 만경강 유역 내 유관기관(지자체, 환경부, K-water, 기상청 등)이 관할하는 우량국(41개소) 및 수위국(28개소), 저수용량이 30만톤 이상이 되는 농어촌공사 저수지(7개소)를 고려하여 홍수분석 모형(COSFIM)을 구축하였다. 해당 모형은 2018년 8월 호우사상에 대해 주요 수위관측 지점에서 $R^2$가 0.8 이상의 우수한 검증 결과를 보였다. 구축된 모형을 통해 예상강우량별 하천 내 수위지점별 최고수위, 최대유량, 도달시간 등 예상 조견표를 제시하여 호우 발생시 지자체 담당자가 참고할 수 있도록 제시하였다. 또한 수위지점별 홍수대응 기준은 평시, 관심, 주의, 경계, 심각 단계로 구분하여 담당자가 수위별 위험 정도를 인지할 수 있도록 지점별 도달되는 수위의 위험 정보를 알람기준으로 제시하였다. 홍수분석 모형은 상류에 위치한 주요시설물의 운영현황을 연계하고 있어 실제 강우 발생 시 기상예보를 고려하여 하천 내 수위관측 지점별 수위 상승 정도를 예상함으로써 사전에 홍수에 대비할 수 있는 단계별 시간 확보에 활용 가능하다. 향후 홍수대응기준은 하천 환경 변화를 반영하여 지속적인 보완이 필요하며 유관기관과의 수문자료 공유체계 확대로 예방적 차원의 홍수 대응 체계가 구축되어야 할 것이다.

  • PDF

Development of the Dredged Sediments Management System and Its Managing Criteria of Debris Barrier (사방댐 준설퇴적물 관리시스템 개발 및 관리기준 제안)

  • Song, Young-Suk;Yun, Jung-Mann;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The dredged sediment management system was developed to have an objective, quantitative and scientific decision for the optimum removal time of dredged sediments behind debris barrier and was set up at the real site. The dredged sediment management system is designed and developed to directly measure the dredged sediments behind debris barrier in the field. This management system is composed of Data Acquisition System (DAS), Solar System and measurement units for measuring the weight of dredge sediments. The weight of dredged sediments, the water level and the rainfall are measured in real time using the monitoring sensors, and their data can be transmitted to the office through a wireless communication method. The monitoring sensors are composed of the rain gauge to measure rainfall, the load cell system to measure the weight of dredged sediments, and water level meter to measure the water level behind debris barrier. The management criteria of dredged sediments behind debris barrier was suggested by using the weight of dredged sediments. At first, the maximum weight of dredged sediments that could be deposited behind debris barrier was estimated. And then when 50%, 70% and 90% of the maximum dredged sediments weight were accumulated behind debris barrier, the management criteria were divided into phases of Outlooks, Watch and Warning, respectively. The weight of dredged sediments can be monitored by using the dredged sediment management system behind debris barrier in real time, and the condition of debris barrier and the removal time of dredged sediments can be decided based on monitoring results.