• Title/Summary/Keyword: 강수발생과정

Search Result 126, Processing Time 0.027 seconds

A Stochastic Model for Precipitation Occurrence Process of Hourly Precipitation Series (시간강수계열의 강수발생과정에 대한 추계학적 모형)

  • Lee, Jae-Jun;Lee, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.109-124
    • /
    • 2002
  • This study is an effort to develop a stochastic model of precipitation series that preserves the pattern of occurrence of precipitation events throughout the year as well as several characteristics of the duration, amount, and intensity of precipitation events. In this study an event cluster model is used to describe the occurrence of precipitation events. A logarithmic negative mixture distribution is used to describe event duration and separation. The number of events within each cluster is also described by the Poisson cluster process. The duration of each event within a cluster and the separation of events within a single cluster are described by a logarithmic negative mixture distribution. The stochastic model for hourly precipitation occurrence process is fitted to historical precipitation data by estimating the model parameters. To allow for seasonal variations in the precipitation process, the model parameters are estimated separately for each month. an analysis of thirty-four years of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many features of historical precipitation. The seasonal variations in number of precipitation events in each month for the historical and simulated data are also approximately identical. The marginal distributions for event characteristics for the historical and simulated data were similar. The conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.

A Simulation Model for the Intermittent Hydrologic Process (II) - Markov Chain and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(II) - Markov 연쇄와 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.523-534
    • /
    • 1994
  • The purpose of this study is to develop computer simulation model that produce precipitation patterns from stochastic model. In the paper(I) of this study, the alternate renewal process(ARP) is used for the daily precipitation series. In this paper(Il), stochastic simulation models for the daily precipitation series are developed by combining Markov chain for the precipitation occurrence process and continuous probability distribution for the precipitation amounts on the wet days. The precipitation occurrence is determined by first order Markov chain with two states(dry and wet). The amounts of precipitation, given that precipitation has occurred, are described by a Gamma, Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Since the daily precipitation series shows seasonal variation, models are identified for each month of the year separately. To illustrate the application of the simulation models, daily precipitation data were taken from records at the seven locations of the Nakdong and Seomjin river basin. Simulated data were similar to actual data in terms of distribution for wet and dry spells, seasonal variability, and precipitation amounts.

  • PDF

A Stochastic Simulation Model for the Precipitation Amounts of Hourly Precipitation Series (시간강수계열의 강수량 모의발생을 위한 추계학적 모형)

  • Lee, Jung-Sik;Lee, Jae-joon;Park, Jong-Young
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.763-777
    • /
    • 2002
  • The objective of this study is to develop computer simulation model that produces precipitation patterns from stochastic model. The hourly precipitation process consists of the precipitation occurrence and precipitation amounts. In this study, an event cluster model developed by Lee and Lee(2002) is used to describe the occurrence process of events, and the hourly precipitation amounts within each event is described by a nonstationary form of a first-order autoregressive process. The complete stochastic model for hourly precipitation is fitted to historical precipitation data by estimating the model parameters. An analysis of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many of the features of historical precipitation. The autocorrelation coefficients of the historical and simulated data are nearly identical except for lags more than about 3 hours. The precipitation intensity, duration, marginal distributions, and conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.

Classification of meteorological state and spatial correlation analysis of precipitation in Jeonbuk province (전라북도 강수량의 기상특성 분류 및 공간상관성 분석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Hong, Min;Lee, Jong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.404-404
    • /
    • 2011
  • 최근 기상변동성 증가와 극치수문사상의 발생빈도 증가로 인한 기상재해가 빈번하게 일어나고 있다. 이러한 기상현상으로 인한 재해의 예방을 위해서 사전에 위험을 인지하고 그 규모를 예측할 수 있는 여러 기법들이 기상레이더 또는 수치예보자료 등을 이용하여 개발 및 적용되고 있다. 이 과정에서 해결해야 할 여러 문제점들이 있는데, 우선 수치예보자료 또는 기상레이더자료를 종관기상관측소 및 자동기상관측지점의 지상관측 강수량과 연계하여 평가하는 과정이 필요하고, 현재시점에 형성되어 있는 강우장의 공간 이동 예측 기법이 확보되어야 할 것이다. 전북지역은 게릴라성 집중호우가 빈번한 산악형 강수와 산지유역의 급한 하천경사가 맞물려 인명 및 재산피해가 매년 발생하고 있으며, 과거 돌발홍수가 발생한 사례가 있어 이상기후 및 기후변화로 인한 홍수 위험도가 커질 것으로 전망되고 있다. 본 연구는 전라북도의 기상재해 예측모형 개발을 위한 사전 분석과정으로 전라북도지역에서 관측된 기존의 대규모 강수사상을 이용한 강수사상의 특성 분류 및 관측소간 공간상관성을 분석하는데 목적을 두고 있다. 강수사상의 특성분류를 통해 강수 발생형태에 따른 기상학적 영향인자, 강수의 발생량 및 이동특성 예측의 정도를 향상시킬 수 있으며, 분류 기법으로 SVM(support vector machine)을 이용한 자동분류를 적용한다. 또한 관측소간 공간상관성 분석을 위하여 각 관측소 강수량간의 조건부 확률을 이용한다. 예로써 부안관측소에 강수가 발 생했을 때, 부안관측소의 강수량 조건에 의한 전주관측소 강수량 확률을 다음과 같이 구성할 수 있다. �揚滑斂�수량�咀刮활�수량��. 공간상관성 분석과정에서 관측소간 강수 이동시간에 따른 강수 발생 시간의 차이 또한 고려하며, 과거 기상관측 자료의 분석을 통해 전라북도지역의 관측소간 강수발생의 공간적 상관성을 규명하고, 단기예측 모델 개발을 위한 기초자료로 활용할 수 있을 것이다. 또한, 기후변화시나리오에 의한 미래 강수량의 지역적 상세화 과정에도 본 연구를 통한 결과를 이용할 수 있을 것이라 판단된다.

  • PDF

A Simulation Model for the Intermittent Hydrologic Process(I) - Alternate Renewal Process (ARP) and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(I) - 교대재생과정(交代再生過程)(ARP)과 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.509-521
    • /
    • 1994
  • This study is an effort to develop computer simulation model that produce precipitation patterns from stochastic model. A stochastic model is formulated for the process of daily precipitation with considering the sequences of wet and dry days and the precipitation amounts on wet days. This study consists of 2 papers and the process of precipitation occurrence is modelled by an alternate renewal process (ARP) in paper (I). In the ARP model for the precipitation occurrence, four discrete distributions, used to fit the wet and dry spells, were as follows; truncated binomial distribution (TBD), truncated Poisson distribution (TPD), truncated negative binomial distribution (TNBD), logarithmic series distribution (LSD). In companion paper (II) the process of occurrence is developed by Markov chain. The amounts of precipitation, given that precipitation has occurred, are described by a Gamma. Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Daily precipitation series model consists of two models, A-Wand A-G model, by combining the process of precipitation occurrence and a continuous probability distribution on the precipitation of wet days. To evaluate the performance of the simulation model, output from the model was compared with historical data of 7 stations in the Nakdong and Seomjin river basin. The results of paper (1) show that it is possible to design a model for the synthetic generation of IX)int precipitation patterns.

  • PDF

Markov Chain Model for Synthetic Generation by Classification of Daily Precipitation Amount into Multi-State (강수계열의 상태분류에 의한 Markov 연쇄 모의발생 모형)

  • Kim, Ju-Hwan;Park, Chan-Yeong;Kang, Kwan-Won
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.179-188
    • /
    • 1996
  • The chronical sequences of daily precipitation are of great practical importance in the planning and operational processes of water resources system. A sequence of days with alternate dry day and wet day can be generated by two state Markov chain model that establish the subsequent daily state as wet or dry by previously calculated vconditional probabilities depending on the state of previous day. In this study, a synthetic generation model for obtaining the daily precipitation series is presented by classifying the precipitation amount in wet days into multi-states. To apply multi-state Markov chain model, the daily precipitation amounts for wet day are rearranged by grouping into thirty states with intervals for each state. Conditional probabilities as transition probability matrix are estimated from the computational scheme for stepping from the precipitation on one day to that on the following day. Statistical comparisons were made between the historical and synthesized chracteristics of daily precipitation series. From the results, it is shown that the proposed method is available to generate and simulate the daily precipitation series with fair accuracy and conserve the general statistical properties of historical precipitation series.

  • PDF

Development of the Radar Precipitation Bais Correction and Precipitation Ensemble Generation Technique (레이더 강수자료 편의보정 및 강수앙상블 생산기법 개발)

  • Kim, Tae-Jeong;Kwon, Jang-Gyeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.17-17
    • /
    • 2017
  • 최근 기후변화로 인한 국지적인 돌발성 위험기상 및 집중호우의 발생빈도가 증가로 인한 기상재해의 규모가 대형화되고 있다. 이러한 기상재해 및 위험기상의 대비를 위하여 시공간적으로 고해상도를 갖는 레이더 강수자료가 수공학분야에 널리 활용되고 있다. 하지만 기상레이더는 대기 중에 존재하는 수상체로부터 반사되는 반사도를 사용하여 강수량을 산정하므로 지상 강수자료와 시공간적 오차가 존재하며 레이더-반사도 관계식을 적용하더라도 과소추정의 문제가 발생하게 된다. 과소추정의 문제를 해결하기 위하여 편의보정기법을 적용한 레이더 강수자료에는 여전히 관측과정에서 발생할 수 있는 무작위 오차(random error)에 대한 불확실성이 존재하게 된다. 따라서 본 연구에서는 과소추정의 문제를 개선하고 레이더 강수자료의 시공간적 오차구조 규명이 가능한 정량적 강수량 추정기법을 개발하였다. 이를 위해 다변량 분석기법을 사용하여 레이더 강수자료의 시공간적 오차구조를 반영할 수 있는 무작위 오차(random error)를 확률론적으로 발생할 수 있는 레이더 강수앙상블 모형을 개발하였다. 개발된 모형으로부터 생산된 레이더 강우앙상블은 통계적 효율기준 분석결과 우수한 모형성능을 확인하였으며 극치호우 및 강우시계열 패턴 분석결과 지상강우의 특성을 효과적으로 재현하는 것을 확인하였다. 최종적으로 도시유역 및 미계측유역의 강우-유출모형에 입력 자료로 활용하여 홍수자료를 생산할 수 있는 레이더기반 홍수예보 시스템을 개발하고자 한다.

  • PDF

Periodicities of Rainfall Variation and Forcing Factors Cause Severe Droughts (가뭄을 유발하는 강수량 변동의 주기성과 유발요소)

  • Hwang, Seok Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.95-95
    • /
    • 2016
  • 한반도 중부지방은 2014년과 2015년에 연이은 강수량 부족으로 많은 지역에서 가뭄 현상이 나타났다. 특히, 한반도는 여름철에 강수가 집중되는 몬순기후대에 속하기 때문에 여름철 강수량은 생활용수나 농업용수 확보 등 이수 측면에서 매우 중요하다 할 수 있다. 이러한, 한반도(남한)의 중부지역 가뭄을 유발하는 강수량의 부족 현상은 대략 5-10년(평균 7-8년) 주기로 반복된다. 그리고 이러한 10여년 주기 변동성과 더불어 예외적인 경우가 발생하고 매번 그 심도도 변화한다. 이러한 주기성을 우연이라 보기는 어려울 것이나 예외적인 경우나 심도를 가늠할 수 없다는 점(인과관계가 불분명하다는 점)에서 확정론적 현상이라 단정하기도 어려운 현실이다. 따라서 본 연구에서는 이러한 주기적 가뭄을 야기하는 강수량 변동의 원인을 지구물리학적 측면에서 추론해 보고자 한다. 가뭄은 인위적인 조건에 의해서도 발생하고 인과관계에 따른 정의도 다양하지만, 본 연구에서는 자연 상태에서 강수량의 부족에 의한 가뭄 조건만을 고려하였다. 강수과정은 지구의 물순환 운동에 의해 야기되고 지구의 물순환 운동은 지구의 역학적 운동 및 상호작용 관계에 의해 발생한다고 알려져 있다. 따라서 본 연구에서는, 지구물리 과정의 일부로 강수과정을 유발하는 지표인자로 SST와 같은 기후 인자에 대해 변동 주기의 상관성을 범지구적인 시공간 규모에서 검토하였다.

  • PDF

A study on blending technique of precipitation forecasting for optimized quantitative precipitation forecast (최적예측강수 산출을 위한 강수예측자료 병합기법 연구)

  • Yang, Ha-Young;Jeong, Jin-Yim;Ko, Hye-Young;Nam, Kyung-Yeub;Choi, Young-Jean
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.985-985
    • /
    • 2012
  • 최근 지구온난화 및 기후변화로 인해 단시간에 높은 강우강도를 가지고 발생하는 집중호우 홍수 등의 위험기상으로 인한 인명 및 재산피해가 빈번하게 발생하고 있어 초단기 및 단기 강수 예측에 대한 중요성이 부각되고 있다. 단기 강수예측모델은 다양한 관측자료의 사용과 자료동화기법의 개발로 예측능력이 크게 향상되었지만 수치모델의 고유특성인 스핀업(spin-up) 문제로 1~6시간까지 강수예측성능에 한계를 보인다. 반면 초단기 강수예측모델은 레이더기반으로 외삽법을 이용하여 1~3시간까지 높은 정확도의 강수예측을 하지만 강수에코의 생성 소멸의 물리과정을 포함하지 않아 3시간 이후의 정확도가 낮다. 이러한 단기 및 초단기 강수예측모델의 장점을 반영하여 최적 강수예측 자료 생산을 위한 연구를 수행하였다. 이를 위해 초단기 및 단기 강수예측모델의 예측성능을 평가하였으며 모델의 예측성능 기반의 최적 강수자료 병합기법을 개발하였다. 향후 최적 강수예측 자료 생산체계가 구축되면 수문관련 유관기관에서 하천관리에 사용하는 유량예측모델에 시 공간적 고해상도의 강수예측정보를 제공하여 수문분야의 유량예측 정확도 행상에 기여할 것으로 기대된다.

  • PDF

Analysis on CWGEN Simulation Method Considering Climate Change Impacts (기후변화 시나리오를 고려한 CWGEN 모의기법에 관한 연구)

  • Kwon, Hyun-Han;Kim, Byung-Sik;Yoon, Seok-Young;Bae, Young-Hae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1023-1026
    • /
    • 2008
  • 과거에 수문자료 시계열 모의기법은 수자원시스템 설계에 사용되는 일강수량 모의에 주로 이용되어 왔지만 최근에 기후변화에 따른 수문사상의 변동성을 평가하기 위한 기본 자료 모의를 위한 방법론으로 많이 이용되고 있다. 수문시스템에서 강수는 현상의 발생여부에 따라 건조일과 습윤일이 교대로 반복되는 과정으로 구성되어 있으며 건조일, 습윤일 등으로 구분하고 습윤일의 강수량을 상태별로 분류하여 각 상태별 천이확률을 계산함으로써 장래에 발생 가능한 강수사상의 모의 발생이 가능하다. 기후변화 영향 평가 연구에서 가장 중요한 문제 중의 하나는 기후변화로 기인하는 수문사상의 전체적인 거동의 변동사상을 추정하는 것이며 이를 기존 모형들과 연계시키는 방법이라 할 수 있다. 이러한 관점에서 본 연구에서는 천이확률 및 강수 모의에 이용되는 Gamma 확률분포와 같은 분포형의 매개변수들이 우리가 목적으로 하는 월강수량 또는 계절강수량의 총량을 유사하게 모의할 수 있도록 CWGEN(Cross-validated Canonical Correlation Analysis-Weather Generator)를 도입하였다. 이를 국내 강수 지점을 대상으로 검토 평가하였다.

  • PDF