• Title/Summary/Keyword: 강수량 모의

Search Result 459, Processing Time 0.036 seconds

A Development of Rainfall Simulation Model Using Piecewise Generalize Pareto Distribution (불연속 Pareto 분포를 활용한 강수 모의발생 모델 개발)

  • Kwon, Hyun-Han;So, Byung-Jin;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.88-88
    • /
    • 2011
  • 수자원에서 일강수량 모의기법은 다양한 목적으로 활용되고 있으며 기본적으로 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로서 이용된다. 수자원계획은 장기적인 목적을 가지고 수행되는 것이 일반적이며 우리가 목표로 하는 장기간의 일강수량자료의 획득이 어렵기 때문에 단기간의 일강수량자료를 장기 모의하여 이용하게 된다. 일강수량을 모의하는데 있어서 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이며, 기존 Markov Chain 모형을 통한 일강수량 모의에서 발생하는 가장 큰 문제점은 극치강수량을 재현하기 어렵다는 점이다. 이러한 문제점으로 인해 수자원 계획을 수립하는데 있어서 불확실성을 가중시키고 있다. 특히 일강수량 모의기법을 통해서 추정되는 빈도강수량의 과소추정으로 인해 수공구조물 설계 시에 신뢰성을 확보하는 데 문제점이 있다. 이러한 점에서 본 연구에서는 기존 Markov Chain 모형에서 일강수량에 평균적인 특성과 극치특성을 동시에 재현할 수 있도록 불연속 Kernel-Pareto Distribution 기반에 일강수량모의기법을 개발하였다. 한강유역의 3개 강수지점에 대해서 기존 Markov Chain 모형과 본 연구에서 제안한 방법을 적용한 결과 여름의 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 제안한 불연속 Kernel-Pareto 분포형 기반 Markov Chain 모형은 여름의 일강수량 모의 시 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하는 것으로 나타났다. 본 연구에서 제시한 방법론은 전체적으로 기존 Markov Chain 모형에 비해 극치강수량을 재현하는데 유리한 기법으로 판단되며, 또한 극치강수량을 일반강수량으로부터 분리하여 모의함으로서 평균 및 중간값 등 낮은 차수에 모멘트 등 일강수량에 전체적인 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.

  • PDF

A Development of Multi-site Rainfall Simulation Model Using Piecewise Generalize Pareto Distribution (불연속 분포를 이용한 다지점 강수모의발생 기법 개발)

  • So, Byung-Jin;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.123-123
    • /
    • 2012
  • 일강수량은 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로 이용된다. 일반적으로 수자원계획은 장기적인 목적을 가지고 수행되어지며, 장기간의 일강수량 자료를 필요로 한다. 하지만 장기간의 일강수량 자료의 획득의 어려움으로 단기간의 일강수량자료를 이용하여 모의한 장기간 강수자료를 이용하게 된다. 이처럼 수자원계획의 수립에 있어서 일강수량 모의기법의 성능은 수자원계획의 신뢰성 및 결과에 큰 영향을 준다. 일강수량 모의기법은 국내외적으로 매우 활발하게 이루어지고 있으며, 수자원계획 및 수공구조물 설계 외에도 매우 다양한 목적으로 활용되어 지고 있다. 일강수량을 모의기법 중 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이지만, 기존 Markov Chain 모형을 통한 일강수량 모의는 극치강수량을 재현하기 어렵다는 문제점이 있다. 또한, 일강수량 모의 기법의 목적인 수자원계획 및 수공구조물 설계 등의 입력자료로 활용되어지기 위해서는 모의 결과가 유역내 지점별 공간 상관성을 재현함으로써 모형의 우수성과 자료결과의 신뢰성을 확보할 수 있어야 하겠다. 이러한 점에서 본 연구에서는 내삽에서 우수한 재현능력을 갖는 핵 밀도함수와 극치강수량 재현에 유리한 GPD분포의 특징을 함께 고려할 수 있는 불연속 Kernel-Pareto Distribution 기반에 공간상관성 재현 알고리즘을 결합한 일강수량모의기법을 개발하였다. 한강유역의 18개 강수지점에 대해서 기존 Gamma분포를 사용한 Markov Chain 모형과 본 연구에서 제안한 방법을 적용하여 모형을 평가해 보고자 한다. Gamma 분포기반 Markov Chain 모형의 경우 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 적용한 다지점 불연속 Kernel-Pareto 분포 모형은 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하며, 100년빈도 강수량 모의결과 기존 모의모형의 문제점을 보완할 수 있는 개선된 결과를 보여주었다. 본 연구에서 제시한 방법론은 유역내의 공간상관성을 재현하며, 평균 및 중간값 등 낮은 차수의 모멘트 등 일강수량 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.

  • PDF

Derivation of Intensity-Duration-Frequency and Flood Frequency Curve by Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model (비동질성 Markov 모형의 시간강수량 모의 발생을 이용한 IDF 곡선 및 홍수빈도곡선의 유도)

  • Choi, Byung-Kyu;Oh, Tae-Suk;Park, Rae-Gun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.251-264
    • /
    • 2008
  • In this study, a nonhomogeneous markov model which is able to simulate hourly rainfall series is developed for estimating reliable hydrologic variables. The proposed approach is applied to simulate hourly rainfall series in Korea. The simulated rainfall is used to estimate the design rainfall and flood in the watershed, and compared to observations in terms of reproducing underlying distributions of the data to assure model's validation. The model shows that the simulated rainfall series reproduce a similar statistical attribute with observations, and expecially maximum value is gradually increased as number of simulation increase. Therefore, with the proposed approach, the non-homogeneous markov model can be used to estimate variables for the purpose of design of hydraulic structures and analyze uncertainties associated with rainfall input in the hydrologic models.

Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model and Derivation of Rainfall Mass Curve using Transition Probability (비동질성 Markov 모형에 의한 시간강수량 모의 발생과 천이확률을 이용한 강우의 시간분포 유도)

  • Choi, Byung-Kyu;Oh, Tae-Suk;Park, Rae-Gun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.265-276
    • /
    • 2008
  • The observed data of enough period need for design of hydrological works. But, most hydrological data aren't enough. Therefore in this paper, hourly precipitation generated by nonhomogeneous Markov chain model using variable Kernel density function. First, the Kernel estimator is used to estimate the transition probabilities. Second, wet hours are decided by transition probabilities and random numbers. Third, the amount of precipitation of each hours is calculated by the Kernel density function that estimated from observed data. At the results, observed precipitation data and generated precipitation data have similar statistic. Also, rainfall mass curve is derived by calculated transition probabilities for generation of hourly precipitation.

A Development of Extreme Rainfall Outlook Using Bayesian 4P-Beta Model (Bayesian 4P-Beta 모형을 이용한 극치 강수량 전망 기법 개발)

  • Kim, Yong-Tak;Kim, Ho Jun;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.312-312
    • /
    • 2019
  • 지구온난화로 인하여 기상학적 변동성 증가 및 수질, 수자원, 생태계 등의 다양한 영역에 영향을 야기하고 있으며, 이를 통한 피해가 전 세계적으로 증가하고 있는 추세이다. 이에 본 연구에서는 최근 다양한 분야에서 수문학적 빈도에 영향을 미친다고 알려진 AO(Arctic Oscillation), NAO(North Atlantic Oscillation), ENSO(El $Ni{\tilde{n}}o$-Southern Oscillation), PDO(Pacific Decadal Oscillation), MJO(Madden-Julian Oscillation)등의 외부인자중 SST, MJO를 활용하여 계절단위의 수문량 정도에서 기상학적 변량과 관측유역 강수량의 관계를 정립하고 발생 가능한 24시간 지속시간 극치강수량을 모의하였다. 이를 위하여 Bayesian 통계기법을 이용한 비정상성 빈도해석모형을 근간으로 외부 기상인자에 의한 계절강수량 예측모형인 계층적 베이지안 네트워크(Hierarchical Bayesian Network, HBN)를 구축한 후 산정된 결과를 입력 자료로 하여 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 베타 모델(four parameter beta, 4PB)을 연계한 계층적 베이지안 네트워크 베타모델(Hierarchical Bayesian Network-4beta Model, HBN4BM)을 개발하여 기상변동성을 고려한 상세화 모형을 개발하였다. 여름강수량 산정 결과 한강 유역의 경우 2016년은 관측값 573.85mm, 모의 값 567.15mm를 나타내어 약 1.2%의 오차를 나타냈으며, 2017년 및 2018년은 4.5%, 6.8%의 오차에서 모의가 이루어졌다. 금강의 경우 2016년은 다른 연도에 비하여 35.2%라는 큰 오차를 보였지만 불확실성 구간에서 모의가 이루어 졌으며, 2017년 및 2018년은 0.3%, 2.1%의 작은 오차가 발생하였다. 24시간 모의 결과는 최소 0.7%에서 최대 27.1%의 오차를 나타냈으며, 평균적으로 16.4%의 오차 결과가 모의되어 모형의 신뢰성을 확인하였다.

  • PDF

Projection and Analysis of Future Temperature and Precipitation in East Asia Region Using RCP Climate Change Scenario (RCP 기반 동아시아 지역의 미래 기온 및 강수량 변화 분석)

  • Lee, Moon-Hwan;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.578-578
    • /
    • 2015
  • 동아시아 지역의 대부분은 몬순의 영향으로 인해 수자원의 계절적 변동성이 크며 이로 인해 홍수 및 가뭄이 빈번하게 발생하고 있다. 기후변화에 따른 기온과 강수량의 변화는 수자원의 변동성을 더욱 악화시킬 수 있으며, 수재해 피해를 더욱 가중시킬 것으로 전망되고 있다. 본 연구에서는 기후변화에 따른 동아시아 지역의 기온 및 강수량의 변화를 전망하고, 그 특성을 분석하고자 한다. 이를 위해 CMIP5의 핵심실험인 2개 RCP시나리오(RCP4.5, RCP8.5)에 대한 다수의 GCMs 결과를 이용하였다. 구축한 기후시나리오를 이중선형보간법(bilinear interpolation)을 이용하여 공간적으로 상세화하였으며, Delta method를 이용하여 편의보정을 수행하였다. GCM 모의자료의 편의를 산정하기 위해 관측자료는 APHRODITE의 기온 및 강수량 자료를 이용하였다. GCM에 따라 차이가 나지만, 우리나라의 경우 평균적으로 100~300mm 정도 과소모의 되는 것으로 나타났다. 미래 기온 및 강수량 전망을 위해 과거기간은 1976~2005년, 미래기간은 2021~2050년(2040s), 2061~2090년(2070s)으로 구분하였다. 우리나라의 경우 RCP 4.5 하에서 연평균기온은 $1.4{\sim}1.7^{\circ}C$(2040s), $2.2{\sim}3.4^{\circ}C$(2070s) 정도 상승할 것으로 나타났으며, 연평균 강수량은 4.6~5.3% (2040s), 8.4~10.5% (2070s) 정도 증가할 것으로 나타났다. RCP 8.5에서는 연평균 기온은 RCP4.5에 비해 상승폭이 더 컸으며, 강수량은 유사한 결과가 나타났다. 또한, 동아시아 지역에서도 연평균 기온이 상승하고 연평균 강수량은 증가하는 것으로 나타났다. 다만, 지역별로 계절별 기온 및 강수량이 매우 다른 양상으로 나타났다. 이는 동아시아 지역과 같이 계절별 강수량 발생패턴이 다른 지역에서는 홍수 및 가뭄에 매우 중요한 역할을 할 것이다. 따라서 지역적으로 계절별 강수량의 변화를 분석해야 할 것으로 판단되며, 추후 유출량 모의를 기반으로 홍수 및 가뭄의 영향을 직접적으로 분석해야할 것으로 판단된다.

  • PDF

A Study on the Simulation of Daily Precipitation Using Multivariate Kernel Density Estimation (다변량 핵밀도 추정법을 이용한 일강수량 모의에 대한 연구)

  • Cha, Young-Il;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.595-604
    • /
    • 2005
  • Precipitation simulation for making the data size larger is an important task for hydrologic analysis. The simulation can be divided into two major categories which are the parametric and nonparametric methods. Also, precipitation simulation depends on time intervals such as daily or hourly rainfall simulations. So far, Markov model is the most favored method for daily precipitation simulation. However, most models are consist of state transition probability by using the homogeneous Markov chain model. In order to make a state vector, the small size of data brings difficulties, and also the assumption of homogeneousness among the state vector in a month causes problems. In other words, the process of daily precipitation mechanism is nonstationary. In order to overcome these problems, this paper focused on the nonparametric method by using uni-variate and multi-variate when simulating a precipitation instead of currently used parametric method.

A Stochastic Simulation Model for the Precipitation Amounts of Hourly Precipitation Series (시간강수계열의 강수량 모의발생을 위한 추계학적 모형)

  • Lee, Jung-Sik;Lee, Jae-joon;Park, Jong-Young
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.763-777
    • /
    • 2002
  • The objective of this study is to develop computer simulation model that produces precipitation patterns from stochastic model. The hourly precipitation process consists of the precipitation occurrence and precipitation amounts. In this study, an event cluster model developed by Lee and Lee(2002) is used to describe the occurrence process of events, and the hourly precipitation amounts within each event is described by a nonstationary form of a first-order autoregressive process. The complete stochastic model for hourly precipitation is fitted to historical precipitation data by estimating the model parameters. An analysis of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many of the features of historical precipitation. The autocorrelation coefficients of the historical and simulated data are nearly identical except for lags more than about 3 hours. The precipitation intensity, duration, marginal distributions, and conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.

Application of the Modified Bartlett-Lewis Rectangular Pulse Model for Daily Precipitation Simulation in Gamcheon Basin (감천유역의 일 강수량 모의를 위한 MBLRP 모형의 적용)

  • Chung, Yeon-Ji;Kim, Min-ki;Um, Myoung-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.303-314
    • /
    • 2024
  • Precipitation data are an integral part of water management planning, especially the design of hydroelectric structures and the study of floods and droughts. However, it is difficult to obtain accurate data due to space-time constraints. The recent increase in hydrological variability due to climate change has further emphasized the importance of precipitation simulation techniques. Therefore, in this study, the Modified Bartlett-Lewis Rectangular Pulse model was utilized to apply the parameters necessary to predict daily precipitation. The effect of this parameter on the daily precipitation prediction was analyzed by applying exponential distribution, Gamma distribution, and Weibull distribution to evaluate the suitability of daily precipitation prediction according to each distribution type. As a result, it is judged that parameters should be selected in consideration of regional and seasonal characteristics when simulating precipitation using the MBLRP model.

A Study on Uncertainty in the Probable Precipitation According to Precipitation Recording Methods (강수량 기록방식에 따른 확률강수량 산정의 불확실성 고찰)

  • Heeseong Park;Hyoung Seop Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.259-259
    • /
    • 2023
  • 강수량자료는 기초 수문자료의 하나로서 자료 수집시 기록방식에 따라 자료의 정확도가 달라질 수 있다. 주로 많이 사용되는 기록방식은 정시 기록방식이지만 실제 강수계에서는 강수이벤트의 기록이 먼저 이루어진다. 정시 기록 방식은 관측을 하기로 정해 놓은 시각(정시)에 강수계에 집계된 강수량을 읽어 그대로 기록하는 방식이고, 강수이벤트의 기록은 최저관측해상도에 도달하는 강수가 발생한 시각을 기록하는 방식이다. 동일한 강수가 발생하더라도 기록 방식에 따라 이후에 분석에서 다른 결과를 보여줄 수 있다. 특히 확률강수량 산정에 불확실성을 키우는 방향으로 영향을 줄 수 있다. 이에 본 연구에서는 이러한 기록방식에 따른 불확실성을 분석하기 위해 강우모의 발생기법을 이용하여 대규모의 강우를 모의하고 이를 앞서의 두 가지 기록방식으로 기록한 후 기록된 자료를 이용해 확률강수량을 산정하고 기록으로 변환하지 않은 자료를 직접 이용하여 확률강수량을 산정하는 방법으로 각 방법의 불확실성을 비교해 보았다. 또한 측정의 최소단위를 변화시켜 기록한 다음 다시 분석하여 측정의 최소단위가 기록방식에 따라 어떻게 불확실성에 영향을 주는지 알아보았다. 이러한 결과가 향후 강수량의 기록 관리방법의 개선에 반영된다면 좀 더 정확한 수문 분석에 도움이 될 것이다.

  • PDF