Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.88-88
/
2011
수자원에서 일강수량 모의기법은 다양한 목적으로 활용되고 있으며 기본적으로 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로서 이용된다. 수자원계획은 장기적인 목적을 가지고 수행되는 것이 일반적이며 우리가 목표로 하는 장기간의 일강수량자료의 획득이 어렵기 때문에 단기간의 일강수량자료를 장기 모의하여 이용하게 된다. 일강수량을 모의하는데 있어서 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이며, 기존 Markov Chain 모형을 통한 일강수량 모의에서 발생하는 가장 큰 문제점은 극치강수량을 재현하기 어렵다는 점이다. 이러한 문제점으로 인해 수자원 계획을 수립하는데 있어서 불확실성을 가중시키고 있다. 특히 일강수량 모의기법을 통해서 추정되는 빈도강수량의 과소추정으로 인해 수공구조물 설계 시에 신뢰성을 확보하는 데 문제점이 있다. 이러한 점에서 본 연구에서는 기존 Markov Chain 모형에서 일강수량에 평균적인 특성과 극치특성을 동시에 재현할 수 있도록 불연속 Kernel-Pareto Distribution 기반에 일강수량모의기법을 개발하였다. 한강유역의 3개 강수지점에 대해서 기존 Markov Chain 모형과 본 연구에서 제안한 방법을 적용한 결과 여름의 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 제안한 불연속 Kernel-Pareto 분포형 기반 Markov Chain 모형은 여름의 일강수량 모의 시 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하는 것으로 나타났다. 본 연구에서 제시한 방법론은 전체적으로 기존 Markov Chain 모형에 비해 극치강수량을 재현하는데 유리한 기법으로 판단되며, 또한 극치강수량을 일반강수량으로부터 분리하여 모의함으로서 평균 및 중간값 등 낮은 차수에 모멘트 등 일강수량에 전체적인 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.123-123
/
2012
일강수량은 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로 이용된다. 일반적으로 수자원계획은 장기적인 목적을 가지고 수행되어지며, 장기간의 일강수량 자료를 필요로 한다. 하지만 장기간의 일강수량 자료의 획득의 어려움으로 단기간의 일강수량자료를 이용하여 모의한 장기간 강수자료를 이용하게 된다. 이처럼 수자원계획의 수립에 있어서 일강수량 모의기법의 성능은 수자원계획의 신뢰성 및 결과에 큰 영향을 준다. 일강수량 모의기법은 국내외적으로 매우 활발하게 이루어지고 있으며, 수자원계획 및 수공구조물 설계 외에도 매우 다양한 목적으로 활용되어 지고 있다. 일강수량을 모의기법 중 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이지만, 기존 Markov Chain 모형을 통한 일강수량 모의는 극치강수량을 재현하기 어렵다는 문제점이 있다. 또한, 일강수량 모의 기법의 목적인 수자원계획 및 수공구조물 설계 등의 입력자료로 활용되어지기 위해서는 모의 결과가 유역내 지점별 공간 상관성을 재현함으로써 모형의 우수성과 자료결과의 신뢰성을 확보할 수 있어야 하겠다. 이러한 점에서 본 연구에서는 내삽에서 우수한 재현능력을 갖는 핵 밀도함수와 극치강수량 재현에 유리한 GPD분포의 특징을 함께 고려할 수 있는 불연속 Kernel-Pareto Distribution 기반에 공간상관성 재현 알고리즘을 결합한 일강수량모의기법을 개발하였다. 한강유역의 18개 강수지점에 대해서 기존 Gamma분포를 사용한 Markov Chain 모형과 본 연구에서 제안한 방법을 적용하여 모형을 평가해 보고자 한다. Gamma 분포기반 Markov Chain 모형의 경우 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 적용한 다지점 불연속 Kernel-Pareto 분포 모형은 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하며, 100년빈도 강수량 모의결과 기존 모의모형의 문제점을 보완할 수 있는 개선된 결과를 보여주었다. 본 연구에서 제시한 방법론은 유역내의 공간상관성을 재현하며, 평균 및 중간값 등 낮은 차수의 모멘트 등 일강수량 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.
In this study, a nonhomogeneous markov model which is able to simulate hourly rainfall series is developed for estimating reliable hydrologic variables. The proposed approach is applied to simulate hourly rainfall series in Korea. The simulated rainfall is used to estimate the design rainfall and flood in the watershed, and compared to observations in terms of reproducing underlying distributions of the data to assure model's validation. The model shows that the simulated rainfall series reproduce a similar statistical attribute with observations, and expecially maximum value is gradually increased as number of simulation increase. Therefore, with the proposed approach, the non-homogeneous markov model can be used to estimate variables for the purpose of design of hydraulic structures and analyze uncertainties associated with rainfall input in the hydrologic models.
The observed data of enough period need for design of hydrological works. But, most hydrological data aren't enough. Therefore in this paper, hourly precipitation generated by nonhomogeneous Markov chain model using variable Kernel density function. First, the Kernel estimator is used to estimate the transition probabilities. Second, wet hours are decided by transition probabilities and random numbers. Third, the amount of precipitation of each hours is calculated by the Kernel density function that estimated from observed data. At the results, observed precipitation data and generated precipitation data have similar statistic. Also, rainfall mass curve is derived by calculated transition probabilities for generation of hourly precipitation.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.312-312
/
2019
지구온난화로 인하여 기상학적 변동성 증가 및 수질, 수자원, 생태계 등의 다양한 영역에 영향을 야기하고 있으며, 이를 통한 피해가 전 세계적으로 증가하고 있는 추세이다. 이에 본 연구에서는 최근 다양한 분야에서 수문학적 빈도에 영향을 미친다고 알려진 AO(Arctic Oscillation), NAO(North Atlantic Oscillation), ENSO(El $Ni{\tilde{n}}o$-Southern Oscillation), PDO(Pacific Decadal Oscillation), MJO(Madden-Julian Oscillation)등의 외부인자중 SST, MJO를 활용하여 계절단위의 수문량 정도에서 기상학적 변량과 관측유역 강수량의 관계를 정립하고 발생 가능한 24시간 지속시간 극치강수량을 모의하였다. 이를 위하여 Bayesian 통계기법을 이용한 비정상성 빈도해석모형을 근간으로 외부 기상인자에 의한 계절강수량 예측모형인 계층적 베이지안 네트워크(Hierarchical Bayesian Network, HBN)를 구축한 후 산정된 결과를 입력 자료로 하여 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 베타 모델(four parameter beta, 4PB)을 연계한 계층적 베이지안 네트워크 베타모델(Hierarchical Bayesian Network-4beta Model, HBN4BM)을 개발하여 기상변동성을 고려한 상세화 모형을 개발하였다. 여름강수량 산정 결과 한강 유역의 경우 2016년은 관측값 573.85mm, 모의 값 567.15mm를 나타내어 약 1.2%의 오차를 나타냈으며, 2017년 및 2018년은 4.5%, 6.8%의 오차에서 모의가 이루어졌다. 금강의 경우 2016년은 다른 연도에 비하여 35.2%라는 큰 오차를 보였지만 불확실성 구간에서 모의가 이루어 졌으며, 2017년 및 2018년은 0.3%, 2.1%의 작은 오차가 발생하였다. 24시간 모의 결과는 최소 0.7%에서 최대 27.1%의 오차를 나타냈으며, 평균적으로 16.4%의 오차 결과가 모의되어 모형의 신뢰성을 확인하였다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.578-578
/
2015
동아시아 지역의 대부분은 몬순의 영향으로 인해 수자원의 계절적 변동성이 크며 이로 인해 홍수 및 가뭄이 빈번하게 발생하고 있다. 기후변화에 따른 기온과 강수량의 변화는 수자원의 변동성을 더욱 악화시킬 수 있으며, 수재해 피해를 더욱 가중시킬 것으로 전망되고 있다. 본 연구에서는 기후변화에 따른 동아시아 지역의 기온 및 강수량의 변화를 전망하고, 그 특성을 분석하고자 한다. 이를 위해 CMIP5의 핵심실험인 2개 RCP시나리오(RCP4.5, RCP8.5)에 대한 다수의 GCMs 결과를 이용하였다. 구축한 기후시나리오를 이중선형보간법(bilinear interpolation)을 이용하여 공간적으로 상세화하였으며, Delta method를 이용하여 편의보정을 수행하였다. GCM 모의자료의 편의를 산정하기 위해 관측자료는 APHRODITE의 기온 및 강수량 자료를 이용하였다. GCM에 따라 차이가 나지만, 우리나라의 경우 평균적으로 100~300mm 정도 과소모의 되는 것으로 나타났다. 미래 기온 및 강수량 전망을 위해 과거기간은 1976~2005년, 미래기간은 2021~2050년(2040s), 2061~2090년(2070s)으로 구분하였다. 우리나라의 경우 RCP 4.5 하에서 연평균기온은 $1.4{\sim}1.7^{\circ}C$(2040s), $2.2{\sim}3.4^{\circ}C$(2070s) 정도 상승할 것으로 나타났으며, 연평균 강수량은 4.6~5.3% (2040s), 8.4~10.5% (2070s) 정도 증가할 것으로 나타났다. RCP 8.5에서는 연평균 기온은 RCP4.5에 비해 상승폭이 더 컸으며, 강수량은 유사한 결과가 나타났다. 또한, 동아시아 지역에서도 연평균 기온이 상승하고 연평균 강수량은 증가하는 것으로 나타났다. 다만, 지역별로 계절별 기온 및 강수량이 매우 다른 양상으로 나타났다. 이는 동아시아 지역과 같이 계절별 강수량 발생패턴이 다른 지역에서는 홍수 및 가뭄에 매우 중요한 역할을 할 것이다. 따라서 지역적으로 계절별 강수량의 변화를 분석해야 할 것으로 판단되며, 추후 유출량 모의를 기반으로 홍수 및 가뭄의 영향을 직접적으로 분석해야할 것으로 판단된다.
Precipitation simulation for making the data size larger is an important task for hydrologic analysis. The simulation can be divided into two major categories which are the parametric and nonparametric methods. Also, precipitation simulation depends on time intervals such as daily or hourly rainfall simulations. So far, Markov model is the most favored method for daily precipitation simulation. However, most models are consist of state transition probability by using the homogeneous Markov chain model. In order to make a state vector, the small size of data brings difficulties, and also the assumption of homogeneousness among the state vector in a month causes problems. In other words, the process of daily precipitation mechanism is nonstationary. In order to overcome these problems, this paper focused on the nonparametric method by using uni-variate and multi-variate when simulating a precipitation instead of currently used parametric method.
The objective of this study is to develop computer simulation model that produces precipitation patterns from stochastic model. The hourly precipitation process consists of the precipitation occurrence and precipitation amounts. In this study, an event cluster model developed by Lee and Lee(2002) is used to describe the occurrence process of events, and the hourly precipitation amounts within each event is described by a nonstationary form of a first-order autoregressive process. The complete stochastic model for hourly precipitation is fitted to historical precipitation data by estimating the model parameters. An analysis of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many of the features of historical precipitation. The autocorrelation coefficients of the historical and simulated data are nearly identical except for lags more than about 3 hours. The precipitation intensity, duration, marginal distributions, and conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.
KSCE Journal of Civil and Environmental Engineering Research
/
v.44
no.3
/
pp.303-314
/
2024
Precipitation data are an integral part of water management planning, especially the design of hydroelectric structures and the study of floods and droughts. However, it is difficult to obtain accurate data due to space-time constraints. The recent increase in hydrological variability due to climate change has further emphasized the importance of precipitation simulation techniques. Therefore, in this study, the Modified Bartlett-Lewis Rectangular Pulse model was utilized to apply the parameters necessary to predict daily precipitation. The effect of this parameter on the daily precipitation prediction was analyzed by applying exponential distribution, Gamma distribution, and Weibull distribution to evaluate the suitability of daily precipitation prediction according to each distribution type. As a result, it is judged that parameters should be selected in consideration of regional and seasonal characteristics when simulating precipitation using the MBLRP model.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.259-259
/
2023
강수량자료는 기초 수문자료의 하나로서 자료 수집시 기록방식에 따라 자료의 정확도가 달라질 수 있다. 주로 많이 사용되는 기록방식은 정시 기록방식이지만 실제 강수계에서는 강수이벤트의 기록이 먼저 이루어진다. 정시 기록 방식은 관측을 하기로 정해 놓은 시각(정시)에 강수계에 집계된 강수량을 읽어 그대로 기록하는 방식이고, 강수이벤트의 기록은 최저관측해상도에 도달하는 강수가 발생한 시각을 기록하는 방식이다. 동일한 강수가 발생하더라도 기록 방식에 따라 이후에 분석에서 다른 결과를 보여줄 수 있다. 특히 확률강수량 산정에 불확실성을 키우는 방향으로 영향을 줄 수 있다. 이에 본 연구에서는 이러한 기록방식에 따른 불확실성을 분석하기 위해 강우모의 발생기법을 이용하여 대규모의 강우를 모의하고 이를 앞서의 두 가지 기록방식으로 기록한 후 기록된 자료를 이용해 확률강수량을 산정하고 기록으로 변환하지 않은 자료를 직접 이용하여 확률강수량을 산정하는 방법으로 각 방법의 불확실성을 비교해 보았다. 또한 측정의 최소단위를 변화시켜 기록한 다음 다시 분석하여 측정의 최소단위가 기록방식에 따라 어떻게 불확실성에 영향을 주는지 알아보았다. 이러한 결과가 향후 강수량의 기록 관리방법의 개선에 반영된다면 좀 더 정확한 수문 분석에 도움이 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.