• Title/Summary/Keyword: 강성 최적화

Search Result 283, Processing Time 0.028 seconds

Application of Sensitivity Analysis to Vehicle Handling with Equivalent Cornering Stiffness (등가 코너링강성을 사용한 차량의 조종안정성에 대한 민감도 해석)

  • Lee, Chang-Ro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1434-1439
    • /
    • 2012
  • Vehicle is a dynamic system combined with various parameters. Dynamic characteristics of a vehicle can vary with the change of these parameters. To investigate the effect of the design parameter on vehicle handling performance the sensitivity analysis is carried out by the numerical method. The vehicle model is described by equivalent cornering stiffness that considers parameters of suspension and steering system. As the analysis results show the effect on the static and dynamic characteristics of the vehicle system, the sensitivity analysis can be used for synthesis of the design parameters to improve the vehicle handling characteristics at the design stage as well as during the vehicle test under development.

Vertical Limb Stiffness Increased with Gait Speed in the Elderly (노인군 보행 속도 증가에 따른 하지 강성 증가)

  • Hong, Hyun-Hwa;Park, Su-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.687-693
    • /
    • 2011
  • Spring-mass models have been widely accepted to explain the basic dynamics of human gait. Researchers found that the leg stiffness increased with gait speed to increase energy efficiency. However, the difference of leg stiffness change with gait speed between the young and the elderly has not been verified yet. In this study, we calculated the lower limb stiffness of the elderly using walking model with an axial spring. Vertical stiffness was defined as the ratio of the vertical force change to the vertical displacement change. Seven young and eight elderly subjects participated to the test. The subjects walked on a 12 meter long, 1 meter wide walkway at four different gait speeds, ranging from their self-selected speed to maximum speed randomly. Kinetic and kinematic data were collected using three force plates and motion capture cameras, respectively. The vertical stiffness of the two groups increased as a function of walking speed. Maximum walking speed of the elderly was slower than that of the young, yet the walking speed correlated well with the optimal stiffness that maximizes propulsion energy in both groups. The results may imply that human may use apparent limb stiffness to optimize energy based on spring-like leg mechanics.

A Study of the Effects on the Structural Strength by Change of Spot Welding Pitch (점용접의 간격 변화에 의한 구조 강성 영향 평가 연구)

  • Hong, Min-Sung;Kim, Jong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.511-520
    • /
    • 2010
  • In general, spot welding is used at no welding rod or flux for the process, low welding point temperature compared to arc welding, short heating time, less damage to the parent material, and low deformation and residual stress, relatively. Also, because of the pressurization effect, better mechanical qualities of the welding parts are obtained. Therefore, in various fields of industry its rapid operation speed can make mass production possible such as motor industry. In FEM analysis for the spot welding process, it is effective to use simple modeling rather than complicated one because of its numerous number of spots and reduction of analysis time. Therefore, this study provides with not only simplification of modeling analysis by using beam component composition of structure without re-compositing the spot welding point mesh but also modeling analysis of which property of fracture strength is reflected. In addition complete spot welding model is examined at rectangular post shape (hat shape) by impact test, compared the results, and verified its validity. As a result, it is possible to optimize the welding position and to recognize the strength of structure and the proposed equal distance model shows the effect of welding point reduction and improvement of stiffness.

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

Influence of Design Variables on Failure Loads of Sandwich Beam (설계변수에 대한 샌드위치 보의 파손하중)

  • Jongman Kim
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.18-24
    • /
    • 2003
  • Sandwich structures have been widely used in the applications of vessel industry, where high structural stiffness is required with small addition of weight. It is so significant to think of the effect of the variables in the design process of the sandwich structure for the concentrated loads. This paper describes the influence of design variables, such as core density, core thickness and face thickness ratio, on the strength of sandwich beam. The theoretical failure loads based on the 2-D elasticity theory agree well with the experimental yield or failure loads, which are measured at the three point bending laboratory test using AS4/3501-6 facing and polyurethane foam core sandwich beam. The comparison of those yield or failure loads was also done with the ratio of the top to bottom face thickness. The theoretical optimum condition is obtained by finding the intersection point of failure modes involved, which gives optimum core density of the sandwich beam for strength and stiffness. In the addition, the effect of unequal face thickness for the optimized and off-optimized sandwich beams for the strength was compared with the ratio of loading length to beam length, and the variations of strength and stiffness were discussed with the relative ratio of core to face mass.

A Study on the Lightweight Design of Hybrid Modular Carbody Structures Made of Sandwich Composites and Aluminum Extrusions Using Optimum Analysis Method (최적화 해석기법을 이용한 샌드위치 복합재와 알루미늄 압출재 하이브리드 모듈화 차체구조물의 경량 설계 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Han, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1335-1343
    • /
    • 2012
  • In this study, the lightweight modular design of hybrid railway carbody structures made of sandwich composites and aluminum extrusions was investigated by using topology and size optimization techniques. The topology optimum design was used to select the best material for parts of the carbody structure at the initial design stage, and then, the size optimum design was used to find the optimal design parameters of hybrid carbody structures using first-order and sub-problem methods. Through the topology optimization analysis, it was found that aluminum extrusions were suitable for primary members such as the underframe and lower side panel module to improve the stiffness and manufacturability of the carbody structures, and sandwich composites were appropriate for secondary members such as the roof and middle side panel module to minimize its weight. Furthermore, the results obtained by size optimization analysis showed that the weight of hybrid carbody structures composed of aluminum extrusions and sandwich composites could be reduced by a maximum of approximately 17.7% in comparison with carbody structures made of only sandwich composites.

Structural Safety of Lightweight Valve Disc by Topology Optimization Design based on Computational Simulation (전산 시뮬레이션 기반의 위상최적설계에 의한 경량 밸브디스크의 구조적 안전성)

  • Kim, Taehyung
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, flow and structural computational analysis were performed to investigate the structural safety of the lightweight butterfly valve disc designed by topology optimization. After flow analysis, as the opening angle increased, the flow coefficient increased non-linearly and showed a gentle slop. When the opening angle was 12 degree, the cavitation could be predicted. After FE analysis, all FE von-Misses stresses of the lightweight disc were smaller than the yield strength of the material, and all FE maximum deformations were also smaller than the conservative deformation of the previous study. Ultimately, it was confirmed that the structural safety of the lightweight valve disc based on computational analysis is effective.

Shape Optimal Design to Minimize the Weight of a Mask-Frame for OLED Vapor Deposition (OLED 증착용 마스크 프레임의 무게 최소화를 위한 형상최적설계)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4685-4693
    • /
    • 2013
  • Present work deals with a shape optimal design to minimize the weight of the mask-frame used in the process of OLED vapor deposition by the fine metal mask. A design concept for an optimal shape of the frame to increase the stiffness and to reduce the weight is derived using the topology optimization, shape design variables of the frame by adopting slots being defined. An optimal shape is determined by solving the shape optimization problem to minimize the weight of the frame under constraints of the maximum displacement. Weight of the optimal design is 117.6 kg, which is reduced by 138.4 kg(54.1%) of that of the first design, 256 kg.

A Development of a Shape Optimization Design Techniques for the Diagrid Tapered Tall-Building (테이퍼드 다이아그리드 초고층 구조물의 형상 최적설계기법 개발)

  • Han, Sang-Eul;Lee, Han-Joo;Ryu, Jong-Hye;Jeong, So-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • In this paper, the optimal diagrid angle of atypical tall buildings has been found using diagrid optimization technique which is based on parametric algorithm. A diagrid is a diagonal grid which can be seen among atypical tall buildings and structures which effectively resist horizontal and vertical direction loads. Therefore, it is also the objective of this studyto find the maximum stiffness of atypical tall buildings by optimizing diagrid angle. Moreover, this study touches on both cylindrical and tapered off cylindrical structures, as shown in the examples to check the compatibility of optimum diagrid angle, which effectively resists horizontal deformation on top by optimization algorithm.

A Study on the Vibration Analysis and Optimization for the Composite Optical Structure of an Aircraft (복합재료를 적용한 항공기용 카메라 구조 경량화 설계 및 최적조건 선정에 관한 연구)

  • Kim, Byeong-Jun;Lee, Jun-Ho;Lee, Haeng-Bok;Jung, Dae-Yoon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.230-235
    • /
    • 2012
  • This paper presents the vibration characteristics and the optimization using the orthogonal array about applied composite optical structure of an aircraft. To acquire the vibration characteristics for stable line of sight, modal analysis are performed by using multi-body program ADAMS. And to optimize optical structure, for design variables were selected, larger-the-better characteristics were considered using results of S/N ratio and orthogonal array $L_9(3^4)$. When bearing constraints are selected, radial, axial and moment stiffness value are used to analysis for optimization until now. But B.S.R which is non-dimensional parameter is proposed, structures including bearings can be used for optimization. And then having a result of lager-the-better, the optimized values of each design variable were successfully suggested.