• Title/Summary/Keyword: 강성지지

Search Result 482, Processing Time 0.03 seconds

Laboratory Model Tests on the Load Transfer in Geosynthetic-Reinforced and Pile-Supported Embankment System (토목섬유보강 성토지지말뚝시스템에서의 하중전이 효과에 관한 모형실험)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.9-18
    • /
    • 2010
  • A series of model tests were performed to investigate the load transfer by soil arching in geosynthetic-reinforced and pile-supported(GRPS) embankment systems. In the model tests, model piles with isolated cap were inserted in the model container and geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by rubber form. The loads acting on pile caps and the tensile strain of geosynthetics were monitored by data logging system. At the given interval ratio of pile caps, the efficiency in GRPS embankment systems increased with increasing the height of embankment fills, then gradually converged at constant value. Also, at the given height of embankment fills, the efficiency decreased with increasing the pile spacing. The embankment loads transferred on pile cap by soil arching increased when the geosynthetics installed with piles. This illustrated that reinforcing with the geosynthetics have a good effect to restraint the movement of surrounding soft grounds. The load transfer in GRPS embankment systems was affected by the interval ratio, height of fills, properties of grounds and tensile stiffness and so on.

  • PDF

Numerical Evaluation of Pile Installation Effects as Settlement Reducers for Concrete Tracks (수치해석을 통한 콘크리트궤도 침하감소 목적의 말뚝기초 설치효과 평가)

  • Lee Su-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.73-83
    • /
    • 2005
  • Recently, foundation designs based on piled raft concept have been increasing, where the piles are required not to ensure the overall stability of the foundation but to act as settlement reducer. When a concrete track is constructed on soft ground, excessive settlements may occur, while it rarely has bearing capacity problems. In this case, the settlement of the concrete track may be effectively reduced by arranging a small number of small-diameter piles beneath the track. This paper presents the effect of pile installation on the reduction of concrete track's settlement. A 3D finite difference method was employed to model the piled concrete tracks. A parametric study was carried out to assess the effect of varying soil condition and pile arrangements. From the analysis results, it is verified that the effect of the pile installation is significant to effectively reduce the settlement of concrete track. Optimal number of pile rows and pile spacings was proposed for the economical design of a piled concrete track. The bearing mechanism of piles was also investigated by analyzing load sharing characteristics of pile according to soil conditions and pile arrangements.

다양한 천정각에서 자중에 의한 마젤란 부경의 표면 정밀도

  • Park, Gwi-Jong;Kim, Yeong-Su;An, Gi-Beom;Cheon, Mu-Yeong;Jang, Jeong-Gyun;Park, Byeong-Gon;Yuk, In-Su;Gyeong, Jae-Man
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.32.5-33
    • /
    • 2009
  • 카네기 천문대에서 주도하여 개발 중인 구경 25.4m GMT 망원경 사업에 한국도 공식적으로 참여하였다. 현재 한국천문연구원은 GMT(Giant Magellan Telescope)부경부를 국내에서 개발하고자 이와 관련된 연구를 진행하고 있다. GMT 부경은 직경 1.06m 오목거울 7장이 모여 전체 직경 3.2m인 타원면을 형성하고 초점비는 F/0.7이다. GMT 부경개발 선행 연구과제로 카네기 천문대에서 개발되어 현재 운용중인 구경 6.5m 마젤란 망원경의 부경을 선택하였는데, 이는 마젤란 부경의 형상과 직경, 부경시스템 운영방식이 GMT 와 유사하기 때문이다. 천체관측 망원경에서 거울면의 변형에 가장 큰 영향을 미치는 인자는 거울의 자중이다. 거울의 직경이 커지면 자중이 증가하게 되어 거울면의 처짐이 커지게 된다. 이를 극복하고자 다양한 거울 support들이 개발되었다. 그중에서 counterweight lever 시스템 같은 부양(float) 시스템은 자중의 영향을 보상해 줌으로써 그것에 의한 거울의 변형을 최소화하는 역할을 하는데, GMT 부경 개발에 근간이 되는 마젤란 부경 또한 부양 시스템을 도입하였다. 마젤란 부경의 부양시스템은 counterweight lever 시스템과 유사한 진공 시스템을 도입하였다. 마젤란 부경의 support는 axial 방향으로 거울을 지지하는 axial support와 lateral 방향으로 거울을 지지하는 lateral support가 있는데, 이중에서 axial support가 진공시스템으로 구성된다. Lateral 방향의 지지는 경량화된 거울의 hole 안에 3개의 판스프링을 삽입하여 단지 거울과 판스링의 강성에 의해서만 이루어진다. 이 논문에서는 망원경이 작동을 할때 즉, 천정각(zenith angle)이 변할 때 axial support와 lateral support의 조합(combination)에 의해 지지되는 마젤란 부경의 표면 정밀도 RMS 값을 비교하였다.

  • PDF

A Study on Bearing Capacity Reinforcement for PHC Pile Foundation Using Post-grouting (그라우팅 기법을 활용한 PHC 파일 기초의 지지력 증강 효과 연구)

  • Yoo, Min-Taek;Lee, Su-Hyung;Kim, Seok-Jung;Choi, Yeong-Tae;Park, Jeongjun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • In this research, post grouting methods were applied on PHC piles, and static load tests were conducted to confirm the effect of post grouting on bearing capacity enhancement of PHC piles. Grouting pressures of 1.9 MPa and 3.5 MPa were applied, and bearing capacities of grouted piles were compared with that of non-grouted pile. From the static load test results, the bearing capacities of grouted piles were about 3 times higher than that of non-grouted pile. In addition, the design efficiency (allowable bearing capacity/nominal bearing capacity) increased from 32% to 97% after post grouting, and the axial stiffness of piles also increased by about 1.3 times per grouting pressure.

Analysis of Bearing Capacity Improvement Effect of Inner Cone Penetration Equiped Open-Ended Steel Pipe Pile (개단 강관말뚝 내부 콘항타에 의한 지지력 증대효과 분석)

  • Lee, Junho;Ji, Su-Bin;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2017
  • This study analyzes behavior of bearing capacity of open-ended pipe pile from laboratory experiment results. Unlike the conventional pipe piles, cone penetration is implemented into the inside of the pipe pile. During the cone penetration, cone driving energy helps densification of plugged soils and soils below the pile end. Sand pluviator was used to obtain homogeneous soil layers. Two kinds of piles with different pile outer surface roughness were prepared, and two different drop heights of pile driving were applied. Eight experimental cases varying pile outer surface roughness, pile driving energy for conventional and cone penetration implemented piles were conducted. From the experiments, ultimate load of the pile increased approximately by 70% for increased pile driving height, and it increased by 21% for rougher surface pile. When cone penetration is implemented, the ultimate load increased by 40% in average.

Estimation of Orthotropic Flexural Rigidities Considering the Deformed Shape for a Plate Stiffened with Rectangular Ribs (변형 형상을 고려한 평강 리브 보강판의 직교이방성 휨강성 산정)

  • Chu, Seok Beom;Im, Kwan Hyuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.621-632
    • /
    • 2007
  • The purpose of this study was the estimation and formulation of orthotropic flexural rigidities considering the deformed shape for a plate stiffened with rectangular ribs. Analytical results of methods modifying the flexural rigidity of the x-direction, the y-direction or both directions were compared at the center, the x-directional quarter point and the y-directional quarter point of stiffened plates loaded at the center. The composite method modifying the flexural rigidity of both directions improves the accuracy compared with the other methods. Moreover, the ratio of modified coefficients for each directional rigidity can be expressed as a function corresponding to each dimension of stiffened plates. The application of modified coefficient functions to various types of stiffened plates with different boundary conditions, aspect ratios and rib arrangement shows that the increment of the error ratio is small compared with examples of this study and the application of proposed functions shows more accurate results than previous methods modifying the flexural rigidity. Therefore, by using the modified coefficient functions proposed in this study, the orthotropic plate analysis of plates stiffened with rectangular ribs can easily achieve more accurate displacement results.

A Study on School Crisis Management Capabilities - Focus On Effects to Teenage's Suicide Thinking (학교위기관리경영 능력향상에 관한연구 - 청소년 자살 위기관리 시스템 중심으로)

  • Kang, Sung Ok;Ha, Kyu Su;Yang, Young Mi;Lim, Hyun Sung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.8 no.1
    • /
    • pp.223-233
    • /
    • 2013
  • The purpose of this study is to analyze the factors giving effects to juvenile's suicide thinking and search for the method to protect juveniles from the risk factors of suicide thinking and reinforce protective factors. For this purpose, juvenile's depression and stress degree were analyzed as the factors giving effects to juvenile's suicide thinking and the effect of social support, which was assumed as a protective factor from suicide thinking, was verified. Analysis results are as follows. First, juvenile's daily stress showed significant deference from suicide thinking. There was a significant positive correlation between juvenile's daily life stress and suicide thinking. Therefore, it was found that the juveniles who suffer from stress have a lot of suicide thinking. Second, juvenile's depression gave a significant effect to suicide thinking. There was a significant positive correlation between juvenile's depression and suicide thinking. it was proved that the juveniles who suffer from depression have a lot of suicide thinking. Third, There was a significant negative correlation between social support and suicide thinking. The more the juveniles get social support, the less they have suicide thinking. The study results above reveal that juvenile's suicide shall be approached from the preventive aspect, for preventing juvenile's suicide, social support which mitigates suicide thinking factors is very important. Therefore this study proposed social attention on the juvenile's suicide thinking, and formation social support system that reinforce social support. Moreover, for preventing the factors reinforcing suicide thinking, preventive approach, alternative program such as case management and group program, and integrated management inined with juvenile related organizations and specialists are required. At the same time school environment shall be improved and changed.

  • PDF

Evaluation of Ultimate Bearing Capacity on Granular Compaction Pile Considering Various Stresses in a Ground (지중응력의 변화를 고려한 조립토 다짐말뚝의 극한지지력 평가)

  • Kang, Yun;Yun, Ji-Yeon;Chang, Weon-Ho;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • Granular compaction pile has the load bearing capacity of the soft ground increase and has the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is not widely used in Korea. The granular compaction piles are constructed by grouping them with a raft system. The confining pressure at the center of bulging failure depth is a major variable in estimating the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and the variation of the magnitude of the confining pressure. In this study, a method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge, and loaded area. Also, the ultimate bearing capacity of the granular compaction pile is evaluated on the basis of previous study(Kim et al., 1998) on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests and DEM numerical analysis using the PFC-2D program.

An Experimental Study on Dynamic Behavior Evaluation of Transitional Track (접속부 궤도의 동적거동분석을 위한 실험적 연구)

  • Cho, Sung-Jung;Choi, Jung-Youl;Chun, Dae-Sung;Kim, Man-Cheol;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1379-1385
    • /
    • 2007
  • In domestic transitional zone design, there is regulation to prevent generation of irregular substructure behaviors that negatively influence in prevention of plasticity settlement on approach section and contact section as well as relieve overall track rigidity by reducing sectional foundation and track stiffness difference, but design guideline that considers dynamic behavior of transitional track in actual service line is very insignificant. Therefore in this study, characteristics of transitional track dynamic behaviors by substructure stiffness are researched and measured dynamic response of transitional track by substructure stiffness in order to prove correlation between substructure and track and calculate elasticity(stiffness) and track load of transitional track by using measurement and formula to provide basic information for developing design guideline considering dynamic behavior of service line transitional track.

  • PDF

A Study on the Optimized Cross-section of Embedded Rail System (레일 매립형 궤도시스템(ERS, Embedded Rail System)의 최적단면에 관한 연구)

  • Hwang, Man-Ho;Yun, Kyung-Min;Kim, Soon-Cheol;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2511-2518
    • /
    • 2014
  • An ERS(Embedded Rail System) has large effect on the load distribution because of its continuous rail support. Therefore, stress level of the track components is lower than that of other system. Though the ERS has various advantages, the application example in a domestic railway is rarely applied and the studies for the application of high-speed service lines are insufficient. In this paper, the vertical stiffness is derived from laboratory test and the optimized cross-section is also derived from the analytical analysis as a basic study for application of ERS on the high-speed service lines.