• Title/Summary/Keyword: 강성지지

Search Result 482, Processing Time 0.025 seconds

Curling Behavior of Long-Span Concrete Pavement Slab under Environmental Loads (환경하중에 의한 장스팬 콘크리트 포장 슬래브의 컬링 거동 특성 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom;Yun, Dong-Ju
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.151-161
    • /
    • 2009
  • This study was conducted to investigate the characteristics of the curling behavior of long-span pavement slabs under environmental loads. By developing and using finite element models of the long-span pavement slabs, the stress distribution and the effects of slab length, slab thickness, stiffness of underlying layers, and the restraints of the slab ends on the curling behavior were analyzed. In addition, the field experiments were performed with the actual long-span pavement slab to obtain the curling behavior of the real structure under environmental loads. As a result of this study, it was found that the vertical displacements of the long-span pavement slab along the centerline due to the curling behavior were zero except for the areas near the slab ends, and the curling stresses were maximum and constant where the displacements were zero. The slab length and the stiffness of underlying layers did not affect the maximum curling stresses. The restraints at the slab ends made the curling stresses occur near the slab ends, but did not much affect the maximum curling stresses.

  • PDF

Lightweight Crane Design by Using Topology and Shape Optimization (위상최적설계와 형상최적설계를 이용한 크레인의 경량설계)

  • Kim, Young-Chul;Hong, Jung-Kie;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.821-826
    • /
    • 2011
  • CAE-based structural optimization techniques are applied for the design of a lightweight crane. The boom of the crane is designed by shape optimization with the shape of the cross section of the boom as the design variable. The design objective is mass minimization, and the static strength and dynamic stiffness of the system are set as the design constraints. Hyperworks, a commercial analysis and optimization software, is used for shape and topology optimization. In order to consistently change the shape of the elements of the boom with respect to the change in the shape of its cross section, the morphing function in Hyperworks is used. The support of the boom of the original model is simplified to model the design domain for topology optimization, which is discretized by using three-dimensional solid elements. The final result after shape and topology optimization is 19% and 17% reduction in the masses of the boom and support, respectively, without a deterioration in the system stiffness.

Experimental Study on the Evaluation of Behavior for Floating Track System Using a Resilient Rubber Mat (고무방진매트가 적용된 플로팅궤도시스템의 거동분석을 위한 실험적 연구)

  • Lee, Siyong;Jeong, Incheol;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2014
  • The objective of this study was to estimate the vibration reduction capacities of a floating track system using a resilient rubber mat, and to compare the results with the track support stiffness and track impact factor of a conventional slab track system by performing field tests using actual vehicles running along a service line. The theoretically designed track support stiffness and track impact factor were compared with the measured track support stiffness and track impact factor for each tested track. The calculated and measured track support stiffness of the floating track system were found to be similar, and the floating track system satisfied the design specifications of the track impact factor. The overall vibration level and track support stiffness of the floating track system were thereupon found to be significantly lower than those of the conventional slab track system. The experimental results thus showed that the vibration reduction effect of the floating track system is greater than that of the conventional slab track.

Evaluation of Rail Fatigue and Bending Fatigue Considering Concrete Track Condition (콘크리트도상(STEDEF)의 선로조건을 고려한 레일휨응력 예측과 피로수명 산출)

  • Lee, Soo-hyung;Kang, You-song;Park, Yong-gul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.658-667
    • /
    • 2017
  • Rail is the main track component, playing the most important role in safe railways. For the sake of safety, it is strictly required to secure reliability against fatigue and destruction of rail. In this paper, by field measurement on concrete track, it is confirmed that the rail surface roughness and rail bending stress are linearly correlated with each other; the bending stress of rail can be presented as a function of train speed, track support stiffness, and rail surface roughness. The fatigue life of rail can be estimated by deriving the S-N curve through the fatigue test.

Experimental Study for Concrete Base to Sleeve connection of Hybrid Substructure for Offshore Wind Turbine (하이브리드 해상풍력발전 지지구조물의 콘크리트 베이스-슬리브 연결부에 대한 실험 연구)

  • Lee, Jeong-Hwa;Byun, Nam-Joo;Kim, Seong-Hwan;Park, Jae-Hyun;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.79-87
    • /
    • 2016
  • In this paper, concrete base to sleeve connections of hybrid substructures for offshore wind turbines were suggested and investigated experimentally. Punching shear strength tests with well-instrumented three connections under different reinforcement ratios and loading conditions were conducted to investigate the punching shear strength and the behavior of the concrete base to a sleeve connection. The test results showed that the punching strength and stiffness of the connections are affected mainly by the reinforcement ratios. The loading conditions with an axial load and proportional moment cannot affect the stiffness but affect the strength of the connections because of the axial load-moment interaction. The punching shear failure and critical section of the each test specimen are also discussed.

Diaphragm Design Method of Steel Box Beam and Circular Column Connections (강재 원형기둥-상자형보 접합부의 다이아프램 설계법)

  • Kim, Young Pil;Hwang, Won Sup;Park, Moon Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.123-135
    • /
    • 2006
  • This paper investigates the design equations and the strength behavior of the diaphragm for steel box beams and circular-column connections. The strength of the connection is decided by the strength of the diaphragm and the strength of the beam and the column, because the connection diaphragm supports the concentration forces from the box beam's lower flange. In previous researches, however, the calculation procedure of the diaphragm stress from the indeterminate curved-beam model is to complicated to apply in process of the equation. Moreover, no reasonable design has yet ben made because the diaphragm's effect on the strength of the connection has not ben considered. Therefore, through nonlinear FEM analysis of the connection diaphragm, this study examines the strength behavior of a connection with diaphragm details. In addition, a great difference is confirmed between the theoretical and analytic behaviors. Fi naly, considering the strength of the connection and the rigidity capacity of the diaphragm, the diaphragm design method is proposed.

Post-buckling Behaviour of Aluminium Alloys Rectangular Plate Considering the Initial Deflection Effect (초기 처짐 영향을 고려한 알루미늄 합금 사각형 판의 좌굴 후 거동)

  • Oh, Young-Cheol;Kang, Byoung-Mo;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.738-745
    • /
    • 2014
  • In this paper, It is performing to the elastic and elasto-plastic large deformation series analysis using a numerical method for the initial deflection effect of the aluminum alloy rectangular plate in the elasto-plastic loading area patch loading size. It is assumed a boundary condition to be a simply supported condition and consider the initial deflection amplitude, aspect ratio. It examined the critical elastic buckling load and post-buckling behaviour of aluminium alloy A6082-T6 rectangular plate. It used a commercial program for the elastic and elasto-plastic deformation series analysis. If the initial deflection amplitude is smaller, the in-plane rigidity with increasing to load is reduced from the start and occurs significantly more increasing the amplitude. More higher the aspect ratio, the initial yield strength is gradually decreased, and the plate thickness thicker and occurs larger than the thin walled plate a reduction ratio of the initial yield strength of the patch loading size as 0.5.

Analytical Study on Structural Performance of Wire-Integrated Steel Decks with Varied Lattice End-Support Configurations (철선일체형 데크플레이트의 래티스 단부 지지형상과 구조성능에 대한 해석적 연구)

  • Sanghee Kim;Jong-Kook Hong;Deung-Hwan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.95-102
    • /
    • 2023
  • This study investigated the structural performance of wire-integrated steel decks with varied lattice end support conditions through finite element analysis. The results indicated that the steel decks with the lattice foots positioned above the supporting structural member have the higher system stiffness compared to the cases with the lattice foots shifted away from the support. It is also observed that the contribution of the end vertical bars on both the system stiffness and the strength is negligible when the lattice foots are located on the support. It is, especially, revealed that the end vertical bars can be eliminated when the lattice foot length is not smaller than 40mm. The ultimate load-carrying capacity of the system is not significantly affected by the lattice end support condition. The failure mode of the system is the top bar buckling at the center of the deck plate, the lattice end buckling, and the combination of both depending of design intention.

Parametric Study on Track Deterioration by Various Track Type of Serviced Line (운행선 궤도형식별 궤도열화에 미치는 매개변수 연구)

  • Choi, Jung-Youl;Park, Jong-Yoon;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.239-244
    • /
    • 2022
  • In this study, the key parameters affecting the deterioration of each track type were derived based on field inspections and laboratory tests. The existing track deterioration model was limited to the ballasted tracks, and the deterioration evaluation of concrete tracks was insufficient. In this study, the laboratory test was performed to evaluate the performance and condition of track components to derive the deterioration factors reflecting the characteristics of various track structures. In addition, through analysis of track maintenance history data, parameters affecting track deterioration and maintenance were derived. The key parameters for presenting a track deterioration model based on the track performance of ballasted and concrete tracks through field inspection, track maintenance history data analysis, and performance test of track components using on-site specimens were identified as track support stiffness, Ballast gravel, track settlement and Resilience pad were presented.

Structural Analysis of the Aluminum Extrusion Plate with Truss-Core (트러스 코어 헝상을 갖는 알루미늄 압출재의 구조 해석)

  • 장창두;이병삼;하윤석;김호경;송하철;문형석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.133-140
    • /
    • 2003
  • The sandwich plate has been widely used as an efficient structural member because it has high strength-to-weight and high stiffness-to-weight ratios. To properly design the aluminum extrusion plate , it is necessary to analyze structural behaviors of the extrusions, however, the aluminum extrusions have been rarely studied until now. In the optimization process through numerous iterative calculations, finite element analysis of the sandwich plate with hollow core section requires a considerable amount of computation time and cost. In this paper, the aluminum extrusion plate with truss-core is transformed into an equivalent homogeneous orthotropic plate with appropriate elastic constants. The procedure to evaluate accurate equivalent elastic constants is also established. Using these elastic constants, simple theoretical formulas of the stresses and deflection are proposed in case of the simply-supported orthotropic thick plate under uniform pressure. Through the comparison with the results by commercial FEM code(ANSYS), it is verified that the proposed simpified formula has a good efficiency and accuracy.