Curling Behavior of Long-Span Concrete Pavement Slab under Environmental Loads

환경하중에 의한 장스팬 콘크리트 포장 슬래브의 컬링 거동 특성 분석

  • 김성민 (경희대학교 공과대학 토목공학과) ;
  • 심재수 (경희대학교 공과대학 토목공학과) ;
  • 박희범 (경희대학교 대학원 토목공학과) ;
  • 윤동주 (경희대학교 대학원 토목공학과)
  • Received : 2009.07.10
  • Accepted : 2009.08.19
  • Published : 2009.09.15

Abstract

This study was conducted to investigate the characteristics of the curling behavior of long-span pavement slabs under environmental loads. By developing and using finite element models of the long-span pavement slabs, the stress distribution and the effects of slab length, slab thickness, stiffness of underlying layers, and the restraints of the slab ends on the curling behavior were analyzed. In addition, the field experiments were performed with the actual long-span pavement slab to obtain the curling behavior of the real structure under environmental loads. As a result of this study, it was found that the vertical displacements of the long-span pavement slab along the centerline due to the curling behavior were zero except for the areas near the slab ends, and the curling stresses were maximum and constant where the displacements were zero. The slab length and the stiffness of underlying layers did not affect the maximum curling stresses. The restraints at the slab ends made the curling stresses occur near the slab ends, but did not much affect the maximum curling stresses.

본 연구는 장스팬 콘크리트 포장 슬래브가 환경하중을 받아 컬링 거동을 할 때의 특성을 분석하기 위하여 수행되었다. 먼저 장스팬 포장 슬래브의 유한요소해석 모델을 구성하여 컬링 시 응력분포 특성 및 슬래브 길이, 두께, 하부지지층 강성, 슬래브 단부 구속 등이 컬링 거동에 미치는 영향을 분석하였다. 또한 실제 시공된 장스팬 포장 슬래브를 이용하여 현장에서 환경하중에 의한 거동을 측정함으로써 컬링 거동 특성을 실험적으로도 분석하였다. 연구 결과, 장스팬 포장 슬래브는 단부에서 부터 슬래브 중앙을 따라 어느 정도 안쪽으로 들어오면 컬링에 의한 수직변위가 발생하지 않으며 응력은 이곳에서부터 일정하게 최대치를 보이게 된다. 장스팬 포장 슬래브의 길이 및 하부지지층의 강성은 최대 컬링 응력에 영향을 미치지 않았으며, 슬래브 단부의 구속은 컬링 응력이 단부까지 발생하게 하지만 최대 컬링 응력의 크기에는 거의 영향을 미치지 않았다.

Keywords

References

  1. 김성민, 박희범 (2008). "지반위에 놓인 콘크리트 슬래브의 온도하중 하의 컬링 거동 및 하부층 영향 실험적 분석," 한국도로학회논문집, 한국도로학회, Vol. 10, No. 4, pp. 171-180.
  2. 윤동주, 김성민, 배종오 (2009). "포스트 텐션드 콘크리트 포장의 종방향 긴장 설계 방안," 한국도로학회논문집, 한국도로학회, Vol. 11, No. 1, pp. 203-215.
  3. ABAQUS (2007). User's Manual Version 6.7, Hibbit, Karlsson & Sorensen, Inc., Pawtucket, R. I.
  4. Bradbury, R, D. (1938). Reinforced Concrete Pavements, Wire Reinforcement Institute, Washington, D.C.
  5. Brunner, R. J. (1975). "Prestressed Pavement Demonstration Project," Transportation Research Record, No. 535, Transportation Research Board.
  6. Friberg, B. F. and Pasko, T. J. (1973). "Prestressed Concrete Highway Pavement at Dulles International Airport," Highway Research Record, No. 466, Highway Research Board, pp. 1-19.
  7. Huang, Y. H. (1993). Pavement Analysis and Design, Prentice Hall, New Jersey.
  8. Jeong, J. H. and Zollinger, D. Z. (2004). "Earlyage curling and warping behavior: Insights from a fully instrumented test-slab system," Transportation Research Record - Journal of the Transportation Research Board, No.1896, National Research Council. pp. 66-74.
  9. Kim, S.-M., Won, M. C. and McCullough, B. F. (1998). "Numerical modeling of continuously reinforced concrete pavement subjected to environmental loads," Transportation Research Record, No. 1629, Transportation Research Board, National Research Council, pp. 76-89.
  10. Klunker, F. (1981). "Status and Developments in the Construction of Prestressed Concrete Runways in European Airport," Proceedings of the 2nd International Conference on Concrete Pavement Design, Session 6: Airport Pavement, Purdue University, West Lafayette, Indiana.
  11. Medina-Chavez, C. I. and Won, M. (2005). "Design Standards, Special Specifications, and Monitoring Plan for PCP in Texas," Research Report 5-4035-01-1, Center for Transportation Research, The University of Texas at Austin. pp. 1-50.
  12. Nam, J.-H., Kim, S.-M. and Won, M.C. (2006). "Measurement and analysis of early-age concrete strains and stresses: Continuously reinforced concrete pavement under environmental loading," Transportation Research Record-Journal of the Transportation Research Board, No.1947, National Research Council. pp. 79-90.
  13. Powers, R. and Zaniewski, J. (1987). "Nine Year Performance Evaluation of Arizona's Prestressed Concrete Pavement," Transportation Research Record, No. 1136, Washington, D. C.
  14. Westergaard, H. M. (1925). "Stresses in Concrete Pavements Computed by Theoretical Analysis," Public Roads, Vol. 7, pp. 25-35.