• Title/Summary/Keyword: 강성관

Search Result 230, Processing Time 0.021 seconds

Deformation Behavior Underground Pipe with CLSM (유동성 채움재를 이용한 지하 매설관의 변형특성 연구)

  • Park, Jae-Hun;Lee, Kwan-Ho;Jo, Jae-Yun;Sung, Sang-Kyu
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.25-35
    • /
    • 2003
  • During construction of circular lifeline pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency are the main problems to induce the failure of underground pipe. The use of CLSM(controlled low strength materials) is one of the applications to overcome those problems. In this research, the numerical analysis by PENTAGON FEM program was carried out for 20 cases with the couple of combinations on bedding materials, backfill materials, and pipes. From the FEM analysis, the use of CLSM as backfill materials reduced the settlement of ground surface and the deformation of pipe employed. In case of the vertical deformation on the pipe, common soil backfill for flexible pipes showed 2 times for rigid pipes, but CLSM backfill case did less deformation than the soil backfill for rigid pipes. CLSM backfills for rigid pipes showed the similar results. Judging from the FEM analysis, the use of CLSM increases the structure capacity of the underground pipes.

  • PDF

Deformation Characteristics of Flexible Pipe with Variation of Buried Conditions (매설조건에 따른 연성관의 변형특성)

  • Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.53-62
    • /
    • 2014
  • In Korea, the pipe type that has been well used as sewage pipe from the past is primarily a rigid pipe which is represented by concrete hume pipe, but the use of it is being decreased sharply because of the problems such as tube erosion and incomplete watertightness securing through the time. On the other hand, the use of flexible pipe has been increased because its construction ability is excellent on account of its light weight as well as it is resistant to corrosion. However, because there are lacks of market's confidence in flexible pipe and occurrence cases of partial damage incomplete caused by compaction control, cause analysis and management for them are needed. Therefore, this study tried to estimate the deformation characteristics of pipe caused by each condition through numerical analysis changing construction sequence, rigidity of pipe, strength of ground concrete under the pipe, relative compaction ratio of sand foundation under the pipe and relative compaction ratio of backfill material above the pipe. Evaluation result is that influence on each factor is confirmed and the quality control of sand around the pipe are turned up to be important.

Contact Pressure around the Buried Rigid pipe under Embankment (성토하에 매설된 강성관의 접촉응륜력)

  • 안중선;강병희
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.7-16
    • /
    • 1985
  • The behaviour of buried rigid pipe under embankment is analysed by a linear finite element program to study the influence of variation of the geometry of soil-conduit pipe system and elastic modulus of soil on the pipe response. The geometry of the system considered includes the thickness of pipe, the height of embankment, and the width arid the depth of trench. The normal contact pressure distribution around the pipe and the vertical load on the pipe are modelled by a multiple linear regression. And the vertical load on the pipe computed by Marston-Spangles Theory Is generally larger than that by finite element analysis. The settiement ratio in Marston-Spangler Theory is found to be variable for various for various of all factors mentioned above.

  • PDF

특허기술평가결과 활용사례-(주)유명

  • Korea Invention Promotion Association
    • 발명특허
    • /
    • v.31 no.10 s.364
    • /
    • pp.38-41
    • /
    • 2006
  • 모든 가정과 심지어 회사, 공장 등 어느 곳에서든 하수관은 꼭 필요하다. 이런 다양한 환경에서 발생하는 하수를 옮겨 주는 것이 바로 하수관이기 때문이다. 이처럼 꼭 필요한 하수관은 일반적으로 PE(Polyethylene Solid Sewer Pipe) 하수관이 사용되고 있다. 수요가 많기는 하지만 기존 PE 하수관이 뛰어난 성능을 가지고 있는 것은 아니다. 강성이부족하고 내면이 매끄럽지 않아 오폐물이 침전되어 오폐수의 수통이 원활하지 못하고 이로 인하여 하수관 유지 및 보수에 많은 비용이 발생하였던 것이 사실이다. 또, 강성이 부족하기 때문에 많은 부분에서 사용의 제약이 뒤따랐다. 도로 밑에서의 PE 하수관 설치를 제한하였던 것이 바로 이런 이유 때문이다.

  • PDF

Evaluation of Structural Stiffness Degradation and Burst Pressure Measurement of the FM Kick-Motor Combustion Case (킥모터 FM 규격 연소관에 대한 강성저하 평가 및 파열압력 측정)

  • Yi, Moo-Keun;Cho, In-Hyun;Kim, Joong-Suk;Lee, Won-Bok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.72-77
    • /
    • 2010
  • A hydraulic test on a filament wound case of Kick-Motor was conducted to evaluate the structural stiffness degradation and to confirm the burst performance. Failure criteria have been defined with bursting above 150% of MEOP(Maximum Expected Operation Pressure) and failure in the cylinder. The analysis result showed that filament fiber in the cylinder should be broken at about 2088psig. From a hydraulic test it has been verified that composite case meets the failure requirements, and that the stiffness does not decrease even after a year since the manufacturing.

Stress Stiffening Effect를 고려한 천마 연소관의 날개 부착부위 응력해석 기법연구

  • 이방업;강문중;문순일;은일상
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.189-200
    • /
    • 1998
  • 본 연구에서는 얇은 마레이징강으로 제작된 천마 연소관에 브라켓이 용접되어 비행 날개를 볼트로 체결한 경우, 압력과 공력하중에 의해 브라켓 부위에 집중되는 응력의 해석기법을 정립하기 위하여 선형해석과 기하학적 비선형 해석을 수행하였다. 높은 압력에 의해 발생한 얇은 연소관의 면내 응력이 구조물의 강성을 증가시키는 응력의 강성보강효과(stress stiffening effect)를 고려한 기하학적 비선형 해석을 수행하여 선형해석 결과와 비교하였으며, 압력과 공력하중을 동시에 적용할 수 있는 복합하중시험기로 변형률을 측정하여 해석치의 정확성을 검토하였다. 얇은 연소관에 압력과 공력하중이 동시에 작용하는 경우는 응력의 강성보강효과를 고려한 기하학적 비선형 해석을 수행함으로써 보다 정확한 응력을 구할 수 있다는 결론을 얻었다.

  • PDF

Design of Rigid Sewer Pipe by Bearing Capacity and Settlement (지지력과 침하량을 고려한 강성관용 하수관거 설계)

  • Kim, Seong-Kyum;Oh, Seung-Sik;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.137-143
    • /
    • 2020
  • This study proposes an improvement plan for the evaluation of the bearing capacity and settlement of sewer pipe bases for the improvement of design methods for determining pipe breakage. Under the same conditions, the safety of crushed stone foundation was the lowest. Concrete VR pipe and prefabricated plastic foundations were found to be safe at most excavation depths. The bearing capacity of a rigid pipe foundation was determined by the shape of the foundation, soil conditions, and groundwater, irrespective of the type of foundation. As the depth of the excavation increases, the settlement tends to decrease immediately, and as the diameter of the pipe increases, the settlement tends to increase immediately at the same depth. It is thus reasonable to consider the bearing capacity and the instant settlement amount to solve the problems caused by the settlement of a rigid sewer pipe.

FEM Analysis of Controlled Low Strength Materials for Underground Facility with Bottom Ash (바톰애쉬를 이용한 지하매설관용 유동성뒤채움재의 FEM 해석)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2368-2373
    • /
    • 2012
  • In this research, finite element method was carried out to evaluate the defomation of pipe and surface displacement for backfill of underground ficility. Various conditions for analysis were employer, including two different pipes(PE and concrete pipe), two different excavation depth(60cm and 150cm) and width(1.5D and 2D), a regular sand backfill, and four different flowable backfills. The vertical deformation of 60 cm diameter for PE was measured three times more than that of 30 cm diameter. The measured deformations for regular backfill and four flowable backfills were 0.320mm, and 0.135mm to 0.155mm, respectively. It ratio was around 40%. In case of 30cm diameter of concrete pipe, the measured vertical defomation was around 0.004mm for all the backfill materials. In case of installation depth, the effect of flowable backfill for flexible pipe is better than for rigid pipe. There is little effect on the deformation of concrete pipe with regular sand backfill and flowable backfill.

Pipe Stiffness Prediction of GRP Flexible Pipe (GRP 연성관의 관강성 예측)

  • Lee, Young-Geun;Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.18-24
    • /
    • 2011
  • In this paper, we present the load-deflection behavior of GRP pipes. GRP buried pipes are widely used in construction in the advantage of their superior mechanical and physical characteristics such as high chemical resistance, high corrosion resistance, right weight, smooth surface of the pipe, and cost effectiveness from soil-structure interaction. To design flexible pipes to be buried underground, it should be based on the ASTM D2412(2010). When applying ASTM D 2412(2010) to the design, pipe stiffness(PS) must be predetermined by the parallel-plate test which requires tedious and laborious working process. To overcome such problems, the finite element simulations for finding the load-deflection behavior of the GRP flexible pipes is installed at UTM testing machine. In the finite element simulations, basic data, such as the modulus of elasticity of the material and cross-sectional dimension, is used. From the investigation, we found that the difference between experimental result and analytical prediction is less than 15% when the pipe deflected 3% and 5% of its vertical diameter although the pipe material is not uniform across the cross-section.