• Title/Summary/Keyword: 강부재

Search Result 679, Processing Time 0.026 seconds

Manufacture of Precast Beam Element using High-Strength Self-Compacting Concrete (고강도 자기충전 콘크리트를 이용한 프리캐스트 보 부재 제작)

  • Lee, Hoi-Keun;Jung, Jae-Hong;Kim, Han-Joon;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.249-250
    • /
    • 2009
  • Recently, the interest on self-compacting concrete (SCC) without any mechanical vibration is increasing as the demand for high-strength and high surface quality of precast element increased. In this work, precast beam element with 7m length was manufactured using high-strength SCC with design strength of 60MPa, resulting in high-strength and high surface quality was obtained from the precast beam cast by high-strength SCC.

  • PDF

A Study on Electrochemical Anodic Polarization Behavior for Material Degradation Evaluation of High Temperature Structural Components (고온설비부재의 재질열화도 평가를 위한 전기화학적 양극분극거동에 관한 연구)

  • Yu, Hyo-Seon;Kim, Yeon-Jik;Jeong, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.717-722
    • /
    • 1997
  • 노후화된 고온설비의 안정성 및 효율적인 운전조건을 확보하고, 고온부재의 취성파괴 방지를 위해서는 재질열화의 정량적 평가는 매우 중요하다. 그러나 현장실기에서 기계적 성질의 평가를 위한 대량의 시험편 채취는 거의 불가능하다. 따라서, 실기부재의 강도에 영향을 미치지 않는 범위에서 플랜트 구조물의 재질열화 평가를 비파괴적으로 검출 평가할 수 있는 새로운 시험방법들의 개발이 요구된다. 본 연구에서는 화력설비 부재의 다양한 탄소강을 대상으로 재질열화도 평가를 위한 전기화학적 양극분극시험법의 적용 가능성을 조사하였다. 또한 양극분극시험에 의한 재질열화평가 유효성을 조사하기 위해 전기화학적 시험결과를 입계부식시험결과와 비교.검토해 보았다.

  • PDF

Damping Capacity of Finger-Jointed Lumber (손가락 결합부재의 감쇠거동)

  • Jang, Sang-Sik;Kang, Ho-Yang;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.43-50
    • /
    • 1994
  • 본 연구는 침엽수재를 사용한 손가락결합부재의 강도 및 감쇠특성을 측정함으로서 문창틀재로의 사용가능성을 시험하기 위하여 수행하였다. 손가락결합부 시험편의 형태는 손가락부분의 길이와 경사도에 따라서 다섯가지로 제작하였다. 하중은 4개의 하중단계를 갖는 양방향휨으로 가하였으며 각각의 하중단계는 3개의 하중주기로 구성되었다. 손가락결합부의 파괴특성을 분석하기 위하여 감쇠시험 과정에 AE신호를 측정하였다. MOE는 시험편의 형태와 뚜렷한 관련을 갖고 있지 않으나, MOR은 손가락부분의 경사도가 증가될수록 감소되는 뚜렷한 관계를 나타내었다. 감쇠비는 하중단계가 증가될수록 감소되었으나 파괴직전의 단계에서는 증가되는 경향을 나타내었다. 하중방향에 대하여 수직한 방향의 손가락결합부재가 수평방향부재보다 더 높은 강도를 나타내었다. 60dB 이상의 AE신호는 목재 또는 접착층의 파괴에 의하여 발생되는 것으로 분석되었다. 완전한 파괴가 발생하는 경우에는 100dB 이상의 AE신호가 발생하였다.

  • PDF

Experimental Study on the Material Characteristics and Flexural Behavior of Ultra High-Strength Concrete (초고강도 콘크리트의 재료특성 및 휨 거동에 관한 실험적 연구)

  • 장영일;이호범;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.2
    • /
    • pp.111-118
    • /
    • 1992
  • 본 연구는 실리카흄을 혼화재료로 사용하여 1200kg/$ extrm{cm}^2$정도의 초고강도 콘크리트를 제조하였으며 이에 대한 재료특성을 실험 및 보부재의 휨거동을 실험을 실시 비교 분석하였다. 재료특성 실험으로는 기본적인 강도 시험, 파괴음 측정에 의한 AE실험 그리고 수은압입법에 의한 세공실험을 실시하였다. 초고강도 콘크리트의 재료특성치는 ACI 363의 고강도 콘크리트 재료특성 결가보다 크게 나타났으며 압축강도와 미세공극량은 선형적으로 비례하였다. 보부재의 휨특성을 파악하기 위해 인장철근비 변화, 전단보강근의 유무 및 철근 표면형상의 변화 등을 실험인자로 하였으며 각각의 현상을 비교분석함으로써 균열성상에 따른 하중-변위 관계, 중립축 이동에 따른 부재거동 및 응력블록의 변화에 관하여 비교 고찰하였다. 초고강도 콘크리트 사용한 보부재의 경우 중립축 상승으로 단면의 압축영역은 매우 작아져 급격히 압축파괴되는 경향을 보였으며 응력블록 형태는 삼각형의 분포를 보였다.

Inelastic Analysis of RC Members Using Repair and Retrofitted Element (보수 및 보강요소를 이용한 RC 부재의 비탄성 해석)

  • Lee, Do-Hyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.301-310
    • /
    • 2006
  • In this short paper, an elasto-plastic repair and retrofit element is developed for the investigation of the seismic performance of damaged reinforced concrete members. The developed element is capable of reflecting the increased characteristics due to both repair and retrofitting for degraded strength and stiffness of the members. The element having both birth and death time can freely be activated within the user-defined time intervals during static and dynamic time-history analysis. Comparative studies are conducted for reinforced concrete members being repaired and retrofitted. Analytical predictions including the developed element display reasonable correlation with experimental results. In short, it is concluded that the developed element is capable of providing salient features for the healthy assessment of seismic performance of RC members being repaired and retrofitted.

  • PDF

A Study on the Prediction of Ultimate Stress of Tendon in Unbonded Prestressed Concrete Beams without Slip (비부착 PSC 보에서 슬립이 없는 강선의 극한 응력 예측에 관한 연구)

  • Hong, Sung-Su;Yoo, Sung-Won;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.537-548
    • /
    • 2008
  • Recently, the prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. The purpose of the present paper is therefore to evaluate the flexural behavior and to propose the equation of ultimate tendon stress by performing static flexural test according to span/depth, concrete compression strength, reinforcement ratio and the effect of existing bonded tendon. From experimental results, for cracking, yielding and ultimate load, the effect of reinforcement ratio was more effective than concrete compression strength, and the beams having high strength concrete had a good performance than having low concrete, but there was no difference between high strength and low strength. And as L/dp was larger, test beams had a long region of ductility. This means that unbonded tendon has a large contribution after reinforcement yielding. Especially, the equation of ACI-318 was not match with test results and had no correlations. After analysis of test results, the equation of ultimate unbonded tendon stress without slip was proposed, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of unbonded tendons without slip, analysis and design.

Evaluation of Crack Resistant Performance in Cement Mortar with Steel Fiber and CSA Expansion Admixture (CSA 팽창재를 혼입한 강섬유 보강 모르타르의 균열 저항성능 평가)

  • Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • Steel fiber is a effective composite for crack resistance and improve structural performance under tensile loading. This study presents an evaluation of crack resistance and structural performance in cement mortar with steel fiber and expansion agent through internal chemical prestressing. For this work, cement mortar samples with 10% replacement of cement binder with CSA (Calcium-Sulfo-Aluminate) expansion agent and 1% volume ratio of steel fiber are prepared. Including basic mechanical properties, initial cracking load and fracture energy are evaluated in cement mortar beam with notch. Initial cracking load and fracture energy in cement mortar with CSA and steel fiber increase by 1.75 and 1.41~1.53 times compared with those in cement mortar with steel fiber. With optimum mix design for steel fiber and CSA expansive agent, the composite with chemical prestressing can be applied to various members and effectively improve crack resistance to external loading.

Strength and Lateral Torsional Behavior of Horizontally Curved Steel I-Girders Subjected to Equal End Moments (양단 균일 모멘트를 받는 수평곡선 I형 강재 거더의 횡-비틀림 거동 및 강도 산정 방안)

  • Lee, Keesei;Lee, Manseop;Choi, Junho;Kang, Youngjong
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A curved member should resist bending and torsional moments simultaneously even though the primary load is usually supposed to be gravitational load. The torsional moment causes complicate stress state and also can result in early yielding of material to reduce member strength. According to analysis results, the strength of a curved member that has 45 degrees of subtended angle could decrease more than 50% compare to straight girder. Nevertheless, there have been very few of researches related with ultimate strength of curved girders. In this study, various kinds of stiffness about bending, pure torsion and warping were considered with a number of models in order to verify the main factor that affects ultimate behavior of curved girder. Lateral and rotational displacement of curved member were introduced as lateral-torsional-vertical behavior and bending-torsional moment interaction curve was derived. Finally, a strength equation for ultimate moment of horizontally curved steel I-girders subjected to equal end moments based on the interaction curves. The equation could take account of the effect of curvature, unbraced length and sectional properties.

Performance Evaluation of Organic and Inorganic Fiber Reinforced Concrete in Tunnel Lining Structure (유·무기 섬유 혼입 터널 라이닝 콘크리트 부재의 성능 평가)

  • Lee, Jong-Eun;Kim, Tae-Won;Kim, Su-Man;Jeon, Joong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.110-118
    • /
    • 2009
  • The tunnel structure is widely used for transportation in the mountain area. To reduce the duration of construction and thus the expense, a tunnel excavation is often performed simultaneously with a tunnel lining in in-situ. However, cracking of the tunnel lining may occur arising from the vibrating impact in the excavation process. The present study concerns the role of steel fiber and nylon fibers in tunnel lining concrete to reduce the vibrating impact. As a result it was found that both the nylon fiber and steel fiber improved the durability and physical properties of concrete.

Earthquake Resistance Capacity of a Typical Bridge by Connection Design (연결부분 설계에 의한 일반교량의 내진성능)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.543-550
    • /
    • 2010
  • Earthquake resistant design should provide a description of the structural failure mechanism under earthquakes as well as satisfy the requirement of other designs, e.g. design strengths of each structural member should be equal or greater than the required strengths. The reason of such a requirement is the randomness of seimic loads different from other loads. In this study, a typical bridge is selected as an analysis bridge and the procedure is given to get the ductile failure mechanism through connection design. It is shown with the procedure that the earthquake resistant capacity can be ensured within structural member's strengths required by other designs, without cost raise by strength increase of structural members or by use of shock absorbing device e.g. shock transfer unit.