• Title/Summary/Keyword: 강말뚝

Search Result 76, Processing Time 0.025 seconds

Model Tests on the Characteristics of Lateral Behavior of Steel Pipe Pile in Homogeneous and Nonhomogeneous Soil Conditions (균질 지반과 비균질 지반에서 강관 모형말뚝의 수평거동 특성에 관한 모형실험)

  • 김병탁;김영수
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.153-166
    • /
    • 1998
  • This paper shows the results of a series of model tests on the behavior of steel pipe pile which is subjected to lateral and inclined loads in homogeneous and non-homogeneous Nak-dong River sands. Non-homogeneous soil consisted of two layers, upper and lower layer. The purpose of the present paper is to investigate the effect of ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer and inclined load on the behavior of single pile. These effects can be quantified only by the results of model tests. As a result. in non-homogeneous sand soil, it is shown that the lateral behavior depends upon the ratio of soil modules of upper layer to lower layer more than other factors. And it was found that the relationship between the deflection ratio of non-homogeneous sand to homogeneous sand and the ratio of lower layer height to embedded pile length can be fitted to exponential function of H/L by model tests results. For the inclined load applied, it is shown that the bending moment-depth relationship is not similar to the case of laterally loaded pile and the depth of maximum bending moment at relative density of 90% increases about 70% more than the pile only loaded laterally.

  • PDF

Reliability Updates of Driven Piles Based on Bayesian Theory Using Proof Pile Load Test Results (베이지안 이론을 이용한 타입강관말뚝의 신뢰성 평가)

  • Park, Jae-Hyun;Kim, Dong-Wook;Kwak, Ki-Seok;Chung, Moon-Kyung;Kim, Jun-Young;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.161-170
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was obrained based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability indices of driven steel pipe piles by adding more proof pile load test results, even not conducted to failure, to the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. The empirical method proposed by Meyerhof is used to calculate the predicted pile resistance. Reliability analyses were performed using the updated distribution of pile resistance ratio. The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian updates are most effective when limited data are available for reliability analysis.

한(韓)·호(豪) 항만구조물 설계기준 비교 - 잔교식 안벽을 중심으로

  • Byeon, Gi-Jun;Gang, Gyu-Won;Han, Gwang-Pil
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.76-77
    • /
    • 2018
  • 해외 입찰 시 각 나라에서 적용하고 있는 설계기준의 이해 정도는 적정 설계 물량 산출은 물론 시공성, 공사비 등에 영향을 미쳐 프로젝트 수주 및 수행 성공여부에 매우 중요한 요소로 작용한다. 본 자료는 잔교식 안벽의 해외 입찰설계 단계에서 주요 단면 결정을 위한 주요 설계기준 항목에 대해 호주와 한국의 항만구조물 설계기준을 비교하여 호주 프로젝트를 추진하는 엔지니어에게 도움이 되고자 한다.

  • PDF

Evaluation on Stress-Strain-Strength Behavior of the Textile Encased Soils via Triaxial Compression Tests (삼축압축시험을 통한 섬유로 구속된 흙의 응력-변형률-강도 거동 평가)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Cho, Wanjei
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.643-653
    • /
    • 2013
  • Recently, there are an increasing number of studies on the method of wrapping the outer wall of granular piles with geosynthetic fibers such as geotextile or geogrid that has a certain level of tensile strength as an alternative method for the ground improvement techniques. In this study, triaxial compression tests are performed on the sand and clay specimen encased with various textiles to evaluate the reinforcing effect with regard to the tensile strength of the textile. Furthermore, triaxial compression tests are performed on the clay specimen inserted by sand only and sand encased with geosynthetics to compare behavioral differences between the conventional sand compaction pile and geosynthetic encased sand pile with regard to the replacement ratio, ${\alpha}_s$ and the tensile strength of the geosynthetics. Based on the experimental results, the strength enhancement due to the textile is affected by the longitudinal tensile strength rather than the transverse one of the applied textile. The effect of the confinement by the textile encasement results in the large increase of the cohesions. The overall behaviors, such as shear strength, pore pressure parameter at failure and stress ratio, of the geosynthetic encased sand pile is quite different from those of the conventional sand compaction pile.

Nonlinear Analysis of Shear Behavior on Pile-Sand Interface Using Ring Shear Tests (링전단시험을 이용한 말뚝 기초-사질지반 간 인터페이스 거동 분석)

  • Jeong, Sang-Seom;Jung, Hyung-Suh;Whittle, Andrew;Kim, Do-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.5-17
    • /
    • 2021
  • In this study, the shear behavior between pile-sandy soil interface was quantified based on series of rigorous ring shear test results. Ring shearing test was carried out to observe the shear behavior prior to failure and behavior at residual state between most commonly used pile materials - steel and concrete - and Jumunjin sand. The test was set to clarify the shear behavior under various confinement conditions and soil densities. The test results were converted in to representative friction angles for various test materials. Additional numerical analysis was executed to validate the accuracy of the test results. Based on the test results and the numerical validation, it was found that due to the dilative and contractive nature of sand, its interface behavior can be categorized in to two different types : soils with higher densities tend to show peak shear stress and moves on to residual state, while on the other hand, soils with lower densities tend to show bilinear load-transfer curves along the interface. However, the relative density and the confining stress was found to affect the friction angle only in the small train range, and converges as it progresses to large deformation. This study established a large deformation analysis method which can successfully simulate and predict the large deformation behavior such as ring shear tests. Moreover, the friction angle derived from the ring shear test result and verified by numerical analysis can be applied to numerical analysis and actual design of various pile foundations.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.

Shear Tests Under Constant Normal Stiffness for Granite-concrete Interface (화강암 절단면과 콘크리트 부착면에 대한 일정강성도 전단시험)

  • 조천환;이명환;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The purpose of this paper is to make an understanding of fundamental mechanism of shear behaviour between rock and concrete interfaces in the pile socketed into granite. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axi-symmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed in granite in our country. The samples were prepared in the laboratory to simulate field condition, roughness(angle and height), stress boundary condition, and then tested by CNS direct shear tests. This paper describes shearing behaviour of socket piles into domestic granite through the analysis of CNS test results. It was found out that the peak shear strength increases with the angle of asperity and CNS value, and also the dilation increases with the angle of asperity but decreases with the CNS value.

Shear Strength and Compressibility of Oyster Shell-Sand Mixtures for Sand Compaction Pile (SCP공법 적용을 위한 굴패각-모래 혼합토의 전단과 압축특성)

  • Yoon Gil-Lim;Yoon Yeo-Won;Chae Kwang-Seok;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.17-23
    • /
    • 2004
  • Strength and deformation characteristics of oyster shell-sand mixtures were investigated to utilize waste oyster shell being treated as a waste material. Standard penetration test (SPT) is a common method to obtain in-situ strength in sand. However, in case of oyster shell-sand mixtures, there was no information between SPT N-value and internal friction angle of mixture soils. In this paper SPT experiments from several large scaled model chamber tests and large scaled direct shear tests were carried out with varying unit weight of oyster shell-sand mixtures. Appropriate correlations were in tile study observed among N-value, unit weight and internal friction angle, which make it possible to estimate in-situ strength from SPT and the coefficient of volume compressibility from the confined compression tests to compute the settlement of oyster shell-sand mixtures.

Prediction of Lateral Deflection of Model Piles Using Artificial Neural Network by the Application Readjusting Method (Readjusting 기법을 적용한 인공신경망의 모형말뚝 수평변위 예측)

  • 김병탁;김영수;정성관
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • 본 논문에서는 단일 및 군말뚝의 수평변위를 예측하기 위하여 신경망 학습속도의 향상과 지역 최소점 수렴을 방지하는 Readjusting 기법을 적용한 인공신경망을 도입하였다. 이 인공신경망을 M-EBPNN 이라고 한다. M-EBPNN에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였으며, 그리고 신경망의 학습속도와 지역 최소점의 수렴성을 평가하기 위하여 오류 역전파 신경망(EBPNN)의 결과와도 비교 분석하였다. M-EBPNN의 적용성 검증을 위하여 200개의 모형실험결과들을 이용하였으며, 신경망의 구조는 EBPNN의 구조와 동일한 한 개의 입력층과 두 개의 은닉층 그리고 한 개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학습에 이용하지 않은 데이터들은 예측에 이용되었다. 그리고, 신경망의 최적학습을 위하여 적합한 은닉층의 뉴런 수와 학습률은 EBPNN에서 결정한 값들을 본 신경망에 이용하였다. 해석결과들에 의하면, 동일한 학습패턴에서의 M-EBPNN이 학습 반복횟수는 EBPNN 보다 최고 88% 감소하였으며 지역 최소점에 수렴하는 현상은 거의 나타나지 않았다. 따라서, 인공신경망 모델이 수평하중을 받는 말뚝의 수평변위 예측에 적용될 수 있는 가능성을 보여 주었다.

  • PDF

Effect of Embedment Ratio and Loading Rate on Uplift Adhesion Factor of Concrete Driven Pile (근입비와 인발속도가 콘크리트 항타말뚝의 인발부착계수에 미치는 영향)

  • Kim Jong-In;Park Jeong-Jun;Shin Eun-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Pile foundations are utilized when soil is so weak that shallow foundations are not suitable or point load is concentrated in small area. Such soil can be formed by the land reclamation works which have extensively been executed along the coastal line of southern and western parts of the Korean Peninsula. The working load at pile is sometimes subjected to not only compression load but also lateral load sad uplift forces. But in most of the practice design, uplift capacity of pile foundation is not considered and estimation of uplift capacity is presumed on the compression skin friction. This study was carried out to determine that the effect of embedment ratio and loading rate on uplift adhesion factor of concrete pile driven in clay. Based on the test results, the critical embedment ratio is about 9. Adhesion factor is constant under the critical embedment ratio, and decreasing over the critical embedment ratio. Also, adhesion factor is increased with the loading rate is increased.