• Title/Summary/Keyword: 강도계수

Search Result 2,655, Processing Time 0.03 seconds

Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network (신경회로망을 이용한 유도전동기의 속도 센서리스 방식에 대한 비교)

  • 국윤상;김윤호;최원범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • 일반적으로 시스템 인식과 제어에 이용하는 다층 신경회로망은 기존의 역전파 알고리즘을 이용한다. 그러나 결선강도에 대한 오차의 기울기를 구하는 방법이기 때문에 국부적 최소점에 빠지기 쉽고, 수렴속도가 매우 늦으며 초기 결선강도 값들이나 학습계수에 민감하게 반응한다. 이와 같은 단점을 개선하기 위하여 확장된 칼만 필터링 기법을 역전파 알고리즘에 결합하였으나 계산상의 복잡성 때문에 망의 크기가 증가하면 실제 적용할 수 없다. 최근 신경회로망을 선형과 비선형 구간으로 구분하고 칼만 필터링 기법을 도입하여 수렴속도를 빠르게 하고 초기 결선강도 값에 크게 영향을 받지 않도록 개선하였으나, 여전히 은닉층의 선형 오차값을 역전파 알고리즘에 의해서 계산하기 때문에 학습계수에 민감하다는 단점이 있다. 본 논문에서는 위에서 언급한 기존의 신경회로망 알고리즘의 문제점을 개선하기 위하여 은닉층의 목표값을 최적기법에 의하여 직접계산하고 각각의 결선강도 값은 반복최소 자승법으로 온라인 학습하는 알고리즘을 제안하고 이들 신경회로망 알고리즘과 비교하고자 한다. 여러 가지 시뮬레이션과 실험을 통하여 제안된 방법이 초기 결선강도에 크게 영향을 받지 않으며, 기존의 학습계수 선정에 따른 문제점을 해결함으로써 신경회로망 모델에 기초한 실시간 제어기 설계에 응용할 수 있도록 하였다. 또한, 유도전동기의 속도추정과 제어에 적용하여 좋은 결과를 보였다.

  • PDF

A Modification in the Analysis of the Growth Rate of Short Fatigue Cracks in S45C Carbon Steel under Reversed Loading (반복하중조건 하에서의 S45C 탄소강에 대한 미소피로균열 성장속도 해석의 수정)

  • McEvily,A.J.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 1995
  • A modified method for the analysis of short fatigue crack growth has been presented, and calculations based upon the modified method are compared with experimental results for S45C carbon steel. It is also shown that the modified method is in good agreement with experimental data. The proposed equation for the fatigue crack growth rates includes a material constant which relates the threshold level to the endurance limit, a correction for elastic-plastic behaviour and a means for dealing with the effects of crack closure. In this study one of the modifications is to substitute the Forman' s elastic expression of the stress intensity factor range into the geometrical factor The other is a consideration of the bending effect which is developed from the moment caused by the eccentric cross sectional geometry as the crack grows. Thus, this method is useful for residual life prediction of the mechanical structures as well as the welding structures.

  • PDF

Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume fraction (강섬유 계수 및 혼입률을 고려한 SFRC의 강도 및 변형 특성)

  • Lee Hyun-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.759-766
    • /
    • 2004
  • The addition of steel fiber with concrete significantly improves the engineering properties of structural members, notably shear strength. The purpose of this study is to determine the steel fiber shape, aspect ratio and volume fraction ratio in a point of practical usage as structural members. Steel fiber factor and volume fraction are also considered to verify the strengthening effect in member level. From the reviewing of previous researches and analyzing of consecutive material test results, the optimum shape and length of steel fiber, which can have a good strengthening effects were defined as a hooked end type and larger than 1.5 times of maximum gravel size. Analyzing the test results of strength and deformation capacity, aspect ratio 75 and volume fraction $1.5\%$ can be having a maximum strengthening effect of steel fiber. Also steel fiber factor, tensile splitting strength, and flexural strength are found as key parameter in shear strengthening effect in member level.

Estimation of Strength and Deformation Modulus of the 3-D DFN System Using the Distinct Element Method (개별요소법을 이용한 삼차원 DFN 시스템의 강도 및 변형계수 추정)

  • Ryu, Seongjin;Um, Jeong-Gi;Park, Jinyong
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.15-28
    • /
    • 2020
  • In this study, a procedure was introduced to estimate strength and deformation modulus of the 3-D discrete fracture network(DFN) systems using the distinct element method(DEM). Fracture entities were treated as non-persistent square planes in the DFN systems. Systematically generated fictitious fractures having similar mechanical characteristics of intact rock were combined with non-persistent real fractures to create polyhedral blocks in the analysis domain. Strength and deformation modulus for 10 m cube domain of various deterministic and stochastic 3-D DFN systems were estimated using the DEM to explore the applicability of suggested method and to examine the effect of fracture geometry on strength and deformability of DFN systems. The suggested procedures were found to effective in estimating anisotropic strength and deformability of the 3-D DFN systems.

Effect of Bottom Ash Aggregate Contents on Mechanical Properties of Concrete (콘크리트의 역학적 특성에 대한 바텀애시 골재 양의 영향)

  • Ahn, Tae-Ho;Yang, Keun-Hyeok;Ha, Jung-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.379-386
    • /
    • 2020
  • The present study examined the effect of bottom ash aggregate contents on the compressive strength gain and mechanical properties(modulus of elasticity and rupture and splitting tensile strength) of concrete. Main test parameters were water-to-cement ratio and bottom ash aggregate contents for replacement of natural sand. Test results showed that the 28-days compressive strength of concrete and mechanical properties normalized by the compressive strength tended to decrease with the increase in bottom ash fine aggregate content. When compared with fib 2010 model equations, bottom ash aggregate concrete exhibited the following performances: lower rates of compressive strength gain at early ages but greater rates at long-term ages; slightly higher measurements for modulus of elasticity and rupture; and lower measurements for splitting tensile strength.

The Pull-out Behavior of Rock Bolts According to Grout Strength during Rock Bolt Pull-out (록볼트 인발 시 그라우트 강도에 따른 인발 거동)

  • Seongmin Jang;Hyuksang Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.13-22
    • /
    • 2023
  • In this paper, through experimental research, the period when rock bolts exert support effects is presented as grout strength and through numerical analysis, the rock bolt pull-out behavior according to ground conditions and strength reduction factors is analyzed. As a result, it is determined that rock bolts exhibit their reinforcing effect at a grout strength of 5 MPa (cured for 18 hours). The influence of the boundary interface strength reduction factor was found to be significant for rock bolt displacement in weak ground conditions, for shear stress between grout and ground in highly elastic ground conditions, and for grout stress in all ground conditions. These findings are expected to contribute to the establishment of specific standards for rock bolt testing and numerical analysis, and to facilitate improved design and implementation of rock bolt reinforcement.

Evaluation of Creep Reduction Factor for Geosynthetic Strip Reinforcement with Folding Grooves (접힘홈이 형성된 띠형 섬유보강재의 크리프 감소계수 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.213-224
    • /
    • 2018
  • In this study, a series of accelerated creep tests (SIM) was carried out on geosynthetic strip reinforcements with folding grooves having different tensile strengths (15 kN, 25 kN, 35 kN, 50 kN, 70 kN, and 90 kN) to analyze creep characteristics and to assess creep reduction factors. In particular, long-term creep tests were conducted on geosynthetic strip reinforcements with 25 kN tensile strength, which is widely used, to compare and analyze the accelerated creep test results. As a result, the creep reduction factor increased with an increasing design life of reinforcement. In addition, geosynthetic strip reinforcement using the same material and manufacturing method showed similar creep reduction factors at the same design life for different tensile strengths. When both long-term and accelerated creep test data were used, the creep reduction factors from the accelerated test were estimated to be 5.9%~7.1% less than those from the long-term creep test for the design life ranging from 50 to 100 years.

Shear Friction Strength based on Limit Analysis for Ultra-High Performance Fiber Reinforced Concrete (소성 이론에 의한 강섬유 보강 초고성능콘크리트의 전단 마찰 강도식 제안)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.299-309
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is distinguished from the normal concrete by outstanding compressive and tensile strength. Cracked normal concrete resists shear by aggregate interlocking while clamped by transverse reinforcement, which is called as shear friction theory. Cracked UHPFRC is expected to have a different shear transfer mechanism due to rather smooth crack face and post-cracking behavior under tensile force. Twenty-four push-off specimens with transverse reinforcement are tested for four different fiber volume ratio and three different ratio of reinforcement along the shear plane. The shear friction strength for monolithic concrete are suggested by limit analysis of plasticity and verified by test results. Plastic analysis gives a conservative, but reasonable estimate. The suggested shear friction factor and effectiveness factor of UHPFRC can be applied for interface shear transfer design of high-strength concrete and fiber reinforced concrete with post-cracking tensile strength.

An Experimental Study on Stength of Slender Square Tube Columns Filled with High Strength Concrete (고강도콘크리트충전 각형강관장주의 내력에 관한 실험적 연구)

  • Seo, Seong Yeon;Chung, Jin An
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.471-479
    • /
    • 2002
  • In this paper, 18 square CFT columns filled with high-strength concrete were tested under concentric or eccentric axial loading. Two parameters of the experimental program included the buckling length-section depth ratio ($L_K$/D) and the eccentricity of the appled compressive load (e). In additon, mechanical properties such as the compressive concrete strength and compressive and tensile steel strength were measured and incorporated into the material models for the stress-strain relationships of concrete and steel. This model was used in an elasto-plastic analysis in order to predict the behavior of the slender CFT columns. Observtions of the failure mode during the tests under axial loadig were also presented. The strengths obtained from the analysis. Recommendations for Design, and Constructions of CFT structures were presented, as verified by the experimental results.

Engineering Properties of Permeable Polymer Concrete with CaCO3 and Stone Dust (CaCO3와 석분을 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan Yong;Song, Young Jin;Jung, Hyun Jung
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 1996
  • This study was performed to evaluate the engineering properties of permeable polymer concrete with fillers and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive, 148% by tensile and 188% by bending strength than that of the normal cement concrete, respectively. 2. The static modulus of elasticity was in the range of $1.17{\times}10^5{\sim}1.32{\times}10^5kg/cm^2$, which was approximately 53~56% of that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed relatively higher elastic modulus. The poisson's number of permeable polymer concrete was less than that of the normal cement concrete. 3. The dynamic modulus of elasticity was in the range of $1.3{\times}10^5{\sim}1.5{\times}10^5kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 10~13% than that of the static modulus. 4. The water permeability was in the range of $3.076{\sim}4.390{\ell}/cm^2/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 5. The compressive strength, tensile strength, bending strength and elastic modulus were largely showed with the decrease of water permeability.

  • PDF