• 제목/요약/키워드: 감정 음성

검색결과 231건 처리시간 0.031초

복합색인어 기반 단문텍스트 감정 인식 기법 (Short Text Emotion Recognition based on Complex Keywords)

  • 한기현;이승룡
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.520-522
    • /
    • 2013
  • 스마트 폰의 확산으로 대화의 개념이 음성에서 텍스트로 확대 되고 있다. 방대하게 누적되고 있는 메신저의 텍스트 데이터로부터 유용한 정보들을 찾아 사용자에게 추천서비스를 제공할 수 있다. 이를 뒷받침 해주기 위해서는 텍스트 감정 인식이 중요하다. 기존에는 PMI기법과 감정키워드를 이용하여 감정을 분류 하였다. 그러나 특정단어로 감정을 분류하기 때문에 정확도가 낮았다. 본 논문에서는 복합색인어 기반 텍스트 감정 인식 기법을 제안한다. 문장에서 동사와 복합색인어를 추출하여 음운으로 분해한다. 그리고 스트링커널에서 벡터 값을 추출하여 기계학습 알고리즘(SVM)으로 4가지 감정(행복, 슬픔. 화남, 평범)으로 분류하는 방법이다. 동사와 감정에 영향을 주는 색인어를 추출하여 감정을 인식하는 기법으로 실험결과 정확도는 기존에 동사만 사용했을 때 보다 15%향상됨을 보였다.

비감독 학습과 감독학습의 결합을 통한 음성 감정 인식 (Recognition of Emotional states in speech using combination of Unsupervised Learning with Supervised Learning)

  • 배상호;이장훈;김현정;원일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.391-394
    • /
    • 2011
  • 사용자의 감정을 자동으로 인식하는 연구는 사용자 중심의 서비스를 제공할 때 중요한 요소이다. 인간은 하나의 감정을 다양하게 분류하여 인식한다. 그러나 기계학습을 통해 감정을 인식하려고 할 때 감정을 단일값으로 취급하는 방법만으로는 좋은 성능을 기대하기 어렵다. 따라서 본 논문에서는 비감독 학습과 감독학습을 결합한 감정인식 모델을 제시하였다. 제안된 모델의 핵심은 비감독 학습을 이용하여 인간처럼 한 개의 감정을 다양한 하부 감정으로 분류하고, 이렇게 분류된 감정을 감독학습을 통해 성능을 향상 시키는 것이다.

감정 음성의 국어 발화 말 경계성조 연구 (Research of Korean utterance-final boundary tones in Emotion speeches)

  • 박미영
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2007년도 한국음성과학회 공동학술대회 발표논문집
    • /
    • pp.193-196
    • /
    • 2007
  • The purpose of this paper is to find boundary tone's characteristics in Korean emotion speeches. I mainly focus on investigating patterns and f0 values of boundary tones and f0 values in utterance final phrases.

  • PDF

딥러닝 감정 인식 기반 배경음악 매칭 설계 (Design for Mood-Matched Music Based on Deep Learning Emotion Recognition)

  • 정문식;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.834-836
    • /
    • 2021
  • 멀티모달 감정인식을 통해 사람의 감정을 정확하게 분류하고, 사람의 감정에 어울리는 음악을 매칭하는 시스템을 설계한다. 멀티모달 감정 인식 방법으로는 IEMOCAP(Interactive Emotional Dyadic Motion Capture) 데이터셋을 활용해 감정을 분류하고, 분류된 감정의 분위기에 맞는 음악을 매칭시키는 시스템을 구축하고자 한다. 유니모달 대비 멀티모달 감정인식의 정확도를 개선한 시스템을 통해 텍스트, 음성, 표정을 포함하고 있는 동영상의 감성 분위기에 적합한 음악 매칭 시스템을 연구한다.

멀티모달 감정 인식 AI 기술을 이용한 우울증 예방 플랫폼 구축 (Development of a Depression Prevention Platform using Multi-modal Emotion Recognition AI Technology)

  • 장현빈;조의현;권수연;임선민;조세린;나정은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.916-917
    • /
    • 2023
  • 본 연구는 사용자의 음성 패턴 분석과 텍스트 분류를 중심으로 이루어지는 한국어 감정 인식 작업을 개선하기 위해 Macaron Net 텍스트 모델의 결과와 MFCC 음성 모델의 결과 가중치 합을 분류하여 최종 감정을 판단하는 기존 82.9%였던 정확도를 텍스트 모델 기준 87.0%, Multi-Modal 모델 기준 88.0%로 개선한 모델을 제안한다. 해당 모델을 우울증 예방 플랫폼의 핵심 모델에 탑재하여 covid-19 팬데믹 이후 사회의 문제점으로 부상한 우울증 문제 해소에 기여 하고자 한다.

멀티모달 특징 결합을 통한 감정인식 연구 (The Research on Emotion Recognition through Multimodal Feature Combination)

  • 김성식;양진환;최혁순;고준혁;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.739-740
    • /
    • 2024
  • 본 연구에서는 음성과 텍스트라는 두 가지 모달리티의 데이터를 효과적으로 결합함으로써, 감정 분류의 정확도를 향상시키는 새로운 멀티모달 모델 학습 방법을 제안한다. 이를 위해 음성 데이터로부터 HuBERT 및 MFCC(Mel-Frequency Cepstral Coefficients)기법을 통해 추출한 특징 벡터와 텍스트 데이터로부터 RoBERTa를 통해 추출한 특징 벡터를 결합하여 감정을 분류한다. 실험 결과, 제안한 멀티모달 모델은 F1-Score 92.30으로 유니모달 접근 방식에 비해 우수한 성능 향상을 보였다.

사용자의 성향 기반의 얼굴 표정을 통한 감정 인식률 향상을 위한 연구 (A study on the enhancement of emotion recognition through facial expression detection in user's tendency)

  • 이종식;신동희
    • 감성과학
    • /
    • 제17권1호
    • /
    • pp.53-62
    • /
    • 2014
  • 인간의 감정을 인식하는 기술은 많은 응용분야가 있음에도 불구하고 감정 인식의 어려움으로 인해 쉽게 해결되지 않는 문제로 남아 있다. 인간의 감정 은 크게 영상과 음성을 이용하여 인식이 가능하다. 감정 인식 기술은 영상을 기반으로 하는 방법과 음성을 이용하는 방법 그리고 두 가지를 모두 이용하는 방법으로 많은 연구가 진행 중에 있다. 이 중에 특히 인간의 감정을 가장 보편적으로 표현되는 방식이 얼굴 영상을 이용한 감정 인식 기법에 대한 연구가 활발히 진행 중이다. 그러나 지금까지 사용자의 환경과 이용자 적응에 따라 많은 차이와 오류를 접하게 된다. 본 논문에서는 감정인식률을 향상시키기 위해서는 이용자의 내면적 성향을 이해하고 분석하여 이에 따라 적절한 감정인식의 정확도에 도움을 주어서 감정인식률을 향상 시키는 메카니즘을 제안하였으며 본 연구는 이러한 이용자의 내면적 성향을 분석하여 감정 인식 시스템에 적용함으로 얼굴 표정에 따른 감정인식에 대한 오류를 줄이고 향상 시킬 수 있다. 특히 얼굴표정 미약한 이용자와 감정표현에 인색한 이용자에게 좀 더 향상된 감정인식률을 제공 할 수 있는 방법을 제안하였다.

확률출력 SVM을 이용한 감정식별 및 감정검출 (Identification and Detection of Emotion Using Probabilistic Output SVM)

  • 조훈영;정규준
    • 한국음향학회지
    • /
    • 제25권8호
    • /
    • pp.375-382
    • /
    • 2006
  • 본 논문에서는 음성신호에 포함된 감정정보를 자동으로 식별하는 방법과 특정 감정을 검출하는 방법에 대해 다룬다. 자동 감정식별 및 검출을 위해 장구간 (long-term) 음향 특징을 사용하였고, F-score 기반의 특징선택 기법을 적용하여 최적의 특징 파라미터들을 선정하였다. 기존의 일반적인 SVM을 확률출력 SVM으로 변환하여 감정식별 및 감정검출 시스템을 구축하였으며, 가설검정에 기반한 감정검출을 위해 세 가지의 대수 우도비 (log-likelihood) 근사법을 제안하여 그 성능을 비교하였다. SUSAS 데이터베이스를 사용한 실험 결과, F-score를 이용한 특징선택 기법에 의해 감정식별 성능이 향상되었으며, 확률출력 SVM의 유효성을 검증할 수 있었다. 감정검출의 경우, 제안한 방법에 의해 91.3%의 정확도로 화난 감정을 검출할 수 있었다.

발화 음성을 기반으로 한 감정분석 시스템 (Context sentiment analysis based on Speech Tone)

  • 정준혁;박수덕;김민승;박소현;한상곤;조우현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.1037-1040
    • /
    • 2017
  • 현재 머신러닝과 딥러닝의 기술이 빠른 속도로 발전하면서 수많은 인공지능 음성 비서가 출시되고 있지만, 발화자의 문장 내 존재하는 단어만 분석하여 결과를 반환할 뿐, 비언어적 요소는 인식할 수 없기 때문에 결과의 구조적인 한계가 존재한다. 따라서 본 연구에서는 인간의 의사소통 내 존재하는 비언어적 요소인 말의 빠르기, 성조의 변화 등을 수치 데이터로 변환한 후, "플루칙의 감정 쳇바퀴"를 기초로 지도학습 시키고, 이후 입력되는 음성 데이터를 사전 기계학습 된 데이터를 기초로 kNN 알고리즘을 이용하여 분석한다.

딥 러닝 기반의 API 와 멀티미디어 요소를 활용한 시니어 라이프 데이터 수집 및 상태 분석 (Senior Life Logging and Analysis by Using Deep Learning and Captured Multimedia Data)

  • 김선대;박은수;정종범;구자성;류은석
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.244-247
    • /
    • 2018
  • 본 논문에서는 시니어를 위한 라이프 데이터 수집 및 행동분석 프레임 워크를 설명하고, 이의 부분적 구현을 자세히 설명한다. 본 연구는 시니어를 위한 라이프 데이터를 바탕으로 보호자가 없는 시니어를 보살핌과 동시에, 보호자가 미처 인지하지 못하는 시니어의 비정상적인 상태를 분석하여 판단하는 시스템을 연구한다. 먼저, 시니어가 시간을 많이 소요하는 TV 앞 상황을 가정하고, 방영되는 TV 콘텐츠와 TV 카메라를 이용한 시니어의 영상/음성 정보로 이상상태와 감정상태, TV 콘텐츠에 대한 반응과 반응속도를 체크한다. 구체적으로는 딥 러닝 기반의 API 와 멀티미디어 데이터 분석에서 사용되는 오픈 패키지를 바탕으로, 영상/음성의 키 프레임을 추출하여 감정 및 분위기를 분석하고 시니어의 얼굴 표정 인식, 행동 인식, 음성 인식을 수행한다.

  • PDF