• Title/Summary/Keyword: 감쇠모형

Search Result 236, Processing Time 0.022 seconds

Wave Attenuation due to Water-Front Vegetation (수변식생에 의한 파랑감쇠 특성)

  • Lee, Seong-Dae
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.341-347
    • /
    • 2008
  • Recently, it has been widely recognized that water-front and coastal vegetations may have great value in supporting fisheries, protecting from wave attack, stabilizing the sea bed and maintaining good scenery. Hydrodynamic factors playa major role in the functions of water quality and ecosystems. However, the studies on numerical and analytical process of wave propagation are few and far behind compared to those on the hydrodynamic roles of water-front vegetations. In this study, in order to express wave attenuation into water-front vegetation, a numerical model based on the unsteady mild slope equation is developed. This result is compared with an analytical model for describing the wave attenuation by assumed simple long wave condition. Based on both the analytical and numerical results, the physical properties of the wave attenuation are examined under various wave, geometric and vegetation conditions. Through comparisons between the analytical and numerical results, the effects of the vegetation properties, wave properties and model parameters such as the momentum exchange coefficient have been clarified.

Numerical Experiment of Wave Attenuation considering Behavior of Vegetation Zone (식생대의 거동을 고려한 파랑감쇠의 수치실험)

  • Jeong, Yeon Myeong;Hur, Dong Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.232-239
    • /
    • 2016
  • In this study, the two-way coupled analysis method of LES-WASS-2D and DEM has been newly developed to review numerically wave attenuation due to behavior of vegetation zone could not yet applied in numerical analysis. To verify the applicability, two-way coupled analysis method is analyzed comparing to the experimental result about characteristics of wave attenuation using vegetation. Numerically analyzed behavior and characteristics of wave attenuation according to height length, distribution length, spacing of vegetation zone and incident wave conditions. It was confirmed to be effective of 3~4% wave attenuation were increased height length and distribution length, narrowed spacing of vegetation. Finally, this study is applicable to behavior and wave attenuation prediction of vegetation zone.

Prediction of Chlorine Concentration in a Pilot-Scaled Plant Distribution System (Pilot 규모의 모의 관망에서의 염소 농도 예측)

  • Kim, Hyun Jun;Kim, Sang Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.861-869
    • /
    • 2012
  • The chlorine's residual concentration prevents the regrowth of microorganism in water transport along the pipeline system. Precise prediction of chlorine concentration is important in determining disinfectant injection for the water distribution system. In this study, a pilot scale water distribution system was designed and fabricated to measure the temporal variation of chlorine concentration for three flow conditions (V = 0.88, 1.33, 1.95 m/s). Various kinetic models were applied to identify the relationship between hydraulic condition and chlorine decay. Genetic Algorithm (GA) was integrated into five kinetic models and time series of chlorine were used to calibrate parameters. Model fitness was compared by Root Mean Square Error (RMSE) between measurement and prediction. Limited first order model and Parallel first order showed good fitness for prediction of chlorine concentration.

Estimation of Damping Matrices for Dynamic Systems (동적 시스템의 감쇠행렬 추정)

  • Lee, Gun-Myung;Kim, Kyung-Ju;Ju, Young-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1021-1027
    • /
    • 2009
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping. In the second stage, a damping matrix is estimated with the mass and stiffness matrices fixed. Methods to estimate a damping matrix for this purpose are proposed in this paper. For a system with proportional damping, a damping matrix is estimated using the modal parameters extracted from the measured responses and the modal matrix calculated from the mass and stiffness matrices from the first stage. For a system with non-proportional damping, a damping matrix is estimated from the impedance matrix which is the inverse of the FRF matrix. Only one low or one column of the FRF matrix is measured, and the remaining FRFs are synthesized to obtain a full FRF matrix. This procedure to obtain a full FRF matrix saves time and effort to measure FRFs.

Numerical simulation of flow developed by a sequence of lateral obstacles (연속적으로 배치된 횡단 구조물 주변 흐름 수치모의)

  • Kim, Hyung Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.237-237
    • /
    • 2022
  • 우리나라 하천 내에 설치된 횡단구조물은 보 35,000개소 이상으로 전국 하천의 0.6 km마다 수공구조물이 위치해 있으며 이로 인해 종적(longitudinal) 연결성에 영향을 미치는 것으로 나타났다. 농어촌연구원의 조사에 따르면 하천 횡단구조물이 설치된 구간에 어도 설치율은 14.9%로 나타났으며 이는 수생태 관점에서 연속성이 매우 열악한 상태임을 확인 할 수 있다. 이에 우리나라 각 부처 국토교통부, 환경부 등에서는 수생태 연속성을 확보하고자하는 노력이 지속되고 있으며 대표적으로 어류의 이동통로인 어도를 설치하거나 기존 어도의 효율을 향상시키기 위하여 개보수 작업을 지속적으로 실시하고 있다. 어도의 기능을 평가하기 위해서는 어도 내의 수리특성을 정확히 파악하는 것이 중요한데 연속적인 구조물로 구성된 어도 내 흐름은 매우 복잡하다. 특히 어도 내 구조물간 상호작용에 의하여 비정상 흐름이 발생하며 구조물 뒤에서는 사수역(dead zone)이 형성된다. 사수역에서 나타나는 와류의 거동은 구조물의 기하학적 특성에 따라 변화한다. 본 연구에서는 2차원 수심적분 수치모형을 활용하였으며 벽면 근처 점성저층의 유속분포을 재현하기 위하여와 점성항에 감쇠함수(damping function)를 고려하였다. 수치모형의 검증을 위해 실내 실험수로의 직선 개수로에서 PIV(particle image velocimetry)를 활용하여 연속적으로 배치된 구조물에 의한 유속자료를 활용하였다. 이 결과는 향후 새로운 어도설계 혹은 기 설치된 어도의 수리학적 기능을 평가하는데 활용이 가능할 것으로 보인다.

  • PDF

An Efficient Analytical Model for Floor Vibrations in Residential Buildings with Damping layer (방진층을 설치한 주거용 건축물 바닥판의 진동해석을 위한 효율적인 해석모형)

  • Lee, Dong-Guen;Kim, Tae-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.49-61
    • /
    • 2006
  • The floor impact sound insulations are installed frequently for reducing the floor impact sound into the floor slab of the residential buildings in recent years. Therefore the analytical FE model considering the insulation is needed for the sound and vibration analysis of the floor and it is necessary to use a refined finite element model fer considering the large number of modes involved dynamic responses. So it is very difficult to use FE model because of the tiresome task for constructing the FE model, taking a lot of times for analysis and the impossibility of using the proportional damping. The efficient analysis and modeling method are proposed to the dynamic analysis for the floor with damping layer in this study. The floor slabs and finished layers are modeled individually and the spring elements that mean damping layers used to connect two parts. The dynamic analysis by the $Newmark-{\beta}$ method is performed to solve the non-proportional damping problem due to the damping coefficient of insulations.

An Experimental Study on Acoustic Absorption in a Model Chamber with a Half-Wave Resonator (반파장 공명기를 장착한 모형연소실의 흡음특성에 대한 실험적 연구)

  • Sohn, Chae-Hoon;Park, Ju-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.34-40
    • /
    • 2008
  • Acoustic design parameters of a half-wave resonator are studied experimentally for acoustic stability in a model chamber. According to the standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of damping factor and sound absorption coefficient are evaluated and thereby, the acoustic-damping capacity of the resonator is examined. The diameter and the number of a half-wave resonator, its distribution, and the diameter of an enclosure are selected as the design parameters for optimal tuning of the resonator. Aroustic-damping capacity of the resonator increases with its diameter. When the open-area ratio of the resonator exceeds the optimum value, over-damping appears, leading to the decrease in the peak absorption coefficient and the broadening of absorption bandwidth. As the resonator diameter increases, optimum open-area ratio decreases.

Linear Shallow Water Equations for Waves with Damping (파랑 에너지 감쇠가 있는 경우의 선형천수방정식)

  • Jung, Tae-Hwa;Lee, Chang-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Wave characteristics in the presence of energy damping are investigated using the linear shallow water equations. To get the phase and energy velocities, geometric optics approach is used and then these values are validated through numerical experiments. Energy damping affects wave height, phase and energy velocities which result in wave transformation. When the complex wavenumber is used by the Eulerian approach, it is found that the phase velocity decreases as the damping increases while the energy velocity increases showing higher values than the phase velocity. When the complex angular frequency is used by the Lagrangian approach, the energy-damping wave group is found to propagate in the energy velocity. The energy velocity is found to affect shoaling and refraction coefficient which is verified through numerical experiments for waves on a plane slope.

Measurement Error Model with Skewed Normal Distribution (왜도정규분포 기반의 측정오차모형)

  • Heo, Tae-Young;Choi, Jungsoon;Park, Man Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.953-958
    • /
    • 2013
  • This study suggests a measurement error model based on skewed normal distribution instead of normal distribution to identify slope parameter properties in a simple liner regression model. We prove that the slope parameter in a simple linear regression model is underestimated.

A Review on Lateral Driving Boundary of the Numerical Model using Time Dependent Mild Slope Equation (시간의존 완경사방정식을 이용한 파랑변형 수치모형의 측방입사경계의 처리)

  • 최상철;김인철;편종근
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1993.07a
    • /
    • pp.29-33
    • /
    • 1993
  • 이제까지 천해역에서의 파랑변형을 계산하는 여러가지 수치모형이 제안되어 있다. 그 가운데 Berkhoff(1972)가 유도한 완경사방정식을 수치계산이 쉽고, 쇄파감쇠 및 반사의 고려가 용이한 형태로 개량한 환산·경도(1985)의 시간의존 쌍곡선형 완경사방정식은 널리 이용되고 있다. 계산대상영역에 파가 비스듬하게 입사하는 경우, 외해측 경계뿐만 아니라, 파가 입사하는 측의 측방경계도 입사경계가 될 수 있다. (중략)

  • PDF