• Title/Summary/Keyword: 감쇠능

Search Result 96, Processing Time 0.023 seconds

Petrophysical Joint Inversion of Seismic and Electromagnetic Data (탄성파 탐사자료와 전자탐사자료를 이용한 저류층 물성 동시복합역산)

  • Yu, Jeongmin;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Seismic inversion is a high-resolution tool to delineate the subsurface structures which may contain oil or gas. On the other hand, marine controlled-source electromagnetic (mCSEM) inversion can be a direct tool to indicate hydrocarbon. Thus, the joint inversion using both EM and seismic data together not only reduces the uncertainties but also takes advantage of both data simultaneously. In this paper, we have developed a simultaneous joint inversion approach for the direct estimation of reservoir petrophysical parameters, by linking electromagnetic and seismic data through rock physics model. A cross-gradient constraint is used to enhance the resolution of the inversion image and the maximum likelihood principle is applied to the relative weighting factor which controls the balance between two disparate data. By applying the developed algorithm to the synthetic model simulating the simplified gas field, we could confirm that the high-resolution images of petrophysical parameters can be obtained. However, from the other test using the synthetic model simulating an anticline reservoir, we noticed that the joint inversion produced different images depending on the model constraint used. Therefore, we modified the algorithm which has different model weighting matrix depending on the type of model parameters. Smoothness constraint and Marquardt-Levenberg constraint were applied to the water-saturation and porosity, respectively. When the improved algorithm is applied to the anticline model again, reliable porosity and water-saturation of reservoir were obtained. The inversion results indicate that the developed joint inversion algorithm can be contributed to the calculation of the accurate oil and gas reserves directly.

XSNP: An Extended SaC Network Protocol for High Performance SoC Bus Architecture (XSNP: 고성능 SoC 버스를 위한 확장된 SoC 네트워크 프로토콜)

  • Lee Chan-Ho;Lee Sang-Hun;Kim Eung-Sup;Lee Hyuk-Jae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.554-561
    • /
    • 2006
  • In recent years, as SoC design research is actively conducted, a large number of IPs are included in a system. Various bus protocols and bus architectures are designed to increase IP reusability. Among them, the AMBA AHB became a de facto standard although it is somewhat inadequate for a large scale SoC. We proposed SNP and SNA, high performance on-chip-bus protocol and architecture, respectively, to solve the problem of the conventional shared buses. However, it seems to be imperative that the new on-chip-bus system support AMBA-compatible IPs for a while since there are a lot of IPs with AMBA interface. In this paper, we propose an extended SNP specification and a corresponding SNA component to support ABMA-compatible IPs used in SNA - based system. We extend the phase of the SNP by 1 bit to add new 8 phases to support communication based on AMBA protocol without penalty of elongated cycle latency. The ARB-to -XSNP converter translates the protocol between AHB and SNP to attach AMBA -compatible IPs to SNA based system. We show that AMBA IPs can communicate through SNP without any degradation of performance using the extended SNP and AHB - to- XSNP converter.

unifying solution method for logical topology design on wavelength routed optical networks (WDM의 논리망 구성과 파장할당 그리고 트래픽 라우팅을 위한 개선된 통합 해법)

  • 홍성필
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1452-1460
    • /
    • 2000
  • A series of papers in recent literature on logical topology design for wavelength routed optical networks have proposed mathematical models and solution methods unifying logical topology design wavelength assignment and traffic routing. The most recent one is by Krishnaswamy and Sivarajan which is more unifying and complete than the previous models. Especially the mathematical formulation is an integer linear program and hence regarded in readiness for an efficient solution method compared to the previous nonlinear programming models. The solution method in [7] is however elementary one relying on the rounding of linear program relaxation. When the rounding happens to be successful it tends to produce near-optimal solutions. In general there is no such guarantee so that the obtained solution may not satisfy the essential constraints such as logical -path hop-count and even wavelength number constraints. Also the computational efforts for linear program relaxation seems to be too excessive. In this paper we propose an improved and unifying solution method based on the same to be too excessive. In this paper we propose an improved and unifying solution method based on the same model. First its computation is considerably smaller. Second it guarantees the solution satisfies all the constraints. Finally applied the same instances the quality of solution is fairly competitive to the previous near optimal solution.

  • PDF

CT-Derived Deep Learning-Based Quantification of Body Composition Associated with Disease Severity in Chronic Obstructive Pulmonary Disease (CT 기반 딥러닝을 이용한 만성 폐쇄성 폐질환의 체성분 정량화와 질병 중증도)

  • Jae Eun Song;So Hyeon Bak;Myoung-Nam Lim;Eun Ju Lee;Yoon Ki Cha;Hyun Jung Yoon;Woo Jin Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1123-1133
    • /
    • 2023
  • Purpose Our study aimed to evaluate the association between automated quantified body composition on CT and pulmonary function or quantitative lung features in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods A total of 290 patients with COPD were enrolled in this study. The volume of muscle and subcutaneous fat, area of muscle and subcutaneous fat at T12, and bone attenuation at T12 were obtained from chest CT using a deep learning-based body segmentation algorithm. Parametric response mapping-derived emphysema (PRMemph), PRM-derived functional small airway disease (PRMfSAD), and airway wall thickness (AWT)-Pi10 were quantitatively assessed. The association between body composition and outcomes was evaluated using Pearson's correlation analysis. Results The volume and area of muscle and subcutaneous fat were negatively associated with PRMemph and PRMfSAD (p < 0.05). Bone density at T12 was negatively associated with PRMemph (r = -0.1828, p = 0.002). The volume and area of subcutaneous fat and bone density at T12 were positively correlated with AWT-Pi10 (r = 0.1287, p = 0.030; r = 0.1668, p = 0.005; r = 0.1279, p = 0.031). However, muscle volume was negatively correlated with the AWT-Pi10 (r = -0.1966, p = 0.001). Muscle volume was significantly associated with pulmonary function (p < 0.001). Conclusion Body composition, automatically assessed using chest CT, is associated with the phenotype and severity of COPD.

The Evaluation of Quantitative Accuracy According to Detection Distance in SPECT/CT Applied to Collimator Detector Response(CDR) Recovery (Collimator Detector Response(CDR) 회복이 적용된 SPECT/CT에서 검출거리에 따른 정량적 정확성 평가)

  • Kim, Ji-Hyeon;Son, Hyeon-Soo;Lee, Juyoung;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.55-64
    • /
    • 2017
  • Purpose Recently, with the spread of SPECT/CT, various image correction methods can be applied quickly and accurately, which enabled us to expect quantitative accuracy as well as image quality improvement. Among them, the Collimator Detector Response(CDR) recovery is a correction method aiming at resolution recovery by compensating the blurring effect generated from the distance between the detector and the object. The purpose of this study is to find out quantitative change depending on the change in detection distance in SPECT/CT images with CDR recovery applied. Materials and Methods In order to find out the error of acquisition count depending on the change of detection distance, we set the detection distance according to the obit type as X, Y axis radius 30cm for circular, X, Y axis radius 21cm, 10cm for non-circular and non-circular auto(=auto body contouring, ABC_spacing limit 1cm) and applied reconstruction methods by dividing them into Astonish(3D-OSEM with CDR recovery) and OSEM(w/o CDR recovery) to find out the difference in activity recovery depending on the use of CDR recovery. At this time, attenuation correction, scatter correction, and decay correction were applied to all images. For the quantitative evaluation, calibration scan(cylindrical phantom, $^{99m}TcO_4$ 123.3 MBq, water 9293 ml) was obtained for the purpose of calculating the calibration factor(CF). For the phantom scan, a 50 cc syringe was filled with 31 ml of water and a phantom image was obtained by setting $^{99m}TcO_4$ 123.3 MBq. We set the VOI(volume of interest) in the entire volume of the syringe in the phantom image to measure total counts for each condition and obtained the error of the measured value against true value set by setting CF to check the quantitative accuracy according to the correction. Results The calculated CF was 154.28 (Bq/ml/cps/ml) and the measured values against true values in each conditional image were analyzed to be circular 87.5%, non-circular 90.1%, ABC 91.3% and circular 93.6%, non-circular 93.6%, ABC 93.9% in OSEM and Astonish, respectively. The closer the detection distance, the higher the accuracy of OSEM, and Astonish showed almost similar values regardless of distance. The error was the largest in the OSEM circular(-13.5%) and the smallest in the Astonish ABC(-6.1%). Conclusion SPECT/CT images showed that when the distance compensation is made through the application of CDR recovery, the detection distance shows almost the same quantitative accuracy as the proximity detection even under the distant condition, and accurate correction is possible without being affected by the change in detection distance.

  • PDF

Assessment of Bone Metastasis using Nuclear Medicine Imaging in Breast Cancer : Comparison between PET/CT and Bone Scan (유방암 환자에서 골전이에 대한 핵의학적 평가)

  • Cho, Dae-Hyoun;Ahn, Byeong-Cheol;Kang, Sung-Min;Seo, Ji-Hyoung;Bae, Jin-Ho;Lee, Sang-Woo;Jeong, Jin-Hyang;Yoo, Jeong-Soo;Park, Ho-Young;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.30-41
    • /
    • 2007
  • Purpose: Bone metastasis in breast cancer patients are usually assessed by conventional Tc-99m methylene diphosphonate whole-body bone scan, which has a high sensitivity but a poor specificity. However, positron emission tomography with $^{18}F-2-deoxyglucose$ (FDG-PET) can offer superior spatial resolution and improved specificity. FDG-PET/CT can offer more information to assess bone metastasis than PET alone, by giving a anatomical information of non-enhanced CT image. We attempted to evaluate the usefulness of FDG-PET/CT for detecting bone metastasis in breast cancer and to compare FDG-PET/CT results with bone scan findings. Materials and Methods: The study group comprised 157 women patients (range: $28{\sim}78$ years old, $mean{\pm}SD=49.5{\pm}8.5$) with biopsy-proven breast cancer who underwent bone scan and FDG-PET/CT within 1 week interval. The final diagnosis of bone metastasis was established by histopathological findings, radiological correlation, or clinical follow-up. Bone scan was acquired over 4 hours after administration of 740 MBq Tc-99m MDP. Bone scan image was interpreted as normal, low, intermediate or high probability for osseous metastasis. FDG PET/CT was performed after 6 hours fasting. 370 MBq F-18 FDG was administered intravenously 1 hour before imaging. PET data was obtained by 3D mode and CT data, used as transmission correction database, was acquired during shallow respiration. PET images were evaluated by visual interpretation, and quantification of FDG accumulation in bone lesion was performed by maximal SUV(SUVmax) and relative SUV(SUVrel). Results: Six patients(4.4%) showed metastatic bone lesions. Four(66.6%) of 6 patients with osseous metastasis was detected by bone scan and all 6 patients(100%) were detected by PET/CT. A total of 135 bone lesions found on either FDG-PET or bone scan were consist of 108 osseous metastatic lesion and 27 benign bone lesions. Osseous metastatic lesion had higher SUVmax and SUVrel compared to benign bone lesion($4.79{\pm}3.32$ vs $1.45{\pm}0.44$, p=0.000, $3.08{\pm}2.85$ vs $0.30{\pm}0.43$, p=0.000). Among 108 osseous metastatic lesions, 76 lesions showed as abnormal uptake on bone scan, and 76 lesions also showed as increased FDG uptake on PET/CT scan. There was good agreement between FDG uptake and abnormal bone scan finding (Kendall tau-b : 0.689, p=0.000). Lesion showed increased bone tracer uptake had higher SUVmax and SUVrel compared to lesion showed no abnormal bone scan finding ($6.03{\pm}3.12$ vs $1.09{\pm}1.49$, p=0.000, $4.76{\pm}3.31$ vs $1.29{\pm}0.92$, p=0.000). The order of frequency of osseous metastatic site was vertebra, pelvis, rib, skull, sternum, scapula, femur, clavicle, and humerus. Metastatic lesion on skull had highest SUVmax and metastatic lesion on rib had highest SUVrel. Osteosclerotic metastatic lesion had lowest SUVmax and SUVrel. Conclusion: These results suggest that FDG-PET/CT is more sensitive to detect breast cancer patients with osseous metastasis. CT scan must be reviewed cautiously skeleton with bone window, because osteosclerotic metastatic lesion did not showed abnormal FDG accumulation frequently.