• Title/Summary/Keyword: 감도계수

Search Result 229, Processing Time 0.028 seconds

Acoustic Properties of Ultrasonic Transducer Using Piezocomposites (압전복합재료를 이용한 초음파 트랜스듀서의 음향 특성)

  • Lee, Sang-Wook;Ryu, Jeong-Tag;Nam, Hyo-Duk;Kim, Yeon-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.80-86
    • /
    • 2007
  • We have investigated on the development of 2-2 type piezocomposites that have better piezoelectric activity and lower acoustic impedance than those of conventional piezoceramics. In this study, we have investigated the piezoelectric and acoustic properties of 2-2 type piezocomposites sensor which was fabricated using dice-and-fill technique for the different volume fraction of PZT. The specific acoustic impedance of 2-2 type piezocomposites decreased linearly when PZT volume fraction was decreased. The resonance characteristics measured by an impedance analyzer(HP4194A) were similar to the analysis of finite element method (FEM). The resonance characteristics and the electromechanical coupling factor were the best when the volume fraction PZT was 0.6. It also showed the highest result from the standpoint of sensitivity, bandwidth and ring-down property and so on at the same condition. The specific characteristics show that the 2-2 type piezocomposites turned out to be superior to the ultrasonic sensor composed by single phase PZT.

A Study on Dosimetry for Small Fields of Photon Beam (광자선 소조사면의 선량 측정에 관한 연구)

  • 강위생;하성환;박찬일
    • Progress in Medical Physics
    • /
    • v.5 no.2
    • /
    • pp.57-68
    • /
    • 1994
  • Purpose : The purposes are to discuss the reason to measure dose distributions of circular small fields for stereotactic radiosurgery based on medical linear accelerator, finding of beam axis, and considering points on dosimetry using home-made small water phantom, and to report dosimetric results of 10MV X-ray of Clinac-18, like as TMR, OAR and field size factor required for treatment planning. Method and material : Dose-response linearity and dose-rate dependence of a p-type silicon (Si) diode, of which size and sensitivity are proper for small field dosimetry, are determined by means of measurement. Two water tanks being same in shape and size, with internal dimension, 30${\times}$30${\times}$30cm$^3$ were home-made with acrylic plates and connected by a hose. One of them a used as a water phantom and the other as a device to control depth of the Si detector in the phantom. Two orthogonal dose profiles at a specified depth were used to determine beam axis. TMR's of 4 circular cones, 10, 20, 30 and 40mm at 100cm SAD were measured, and OAR's of them were measured at 4 depths, d$\sub$max/, 6, 10, 15cm at 100cm SCD. Field size factor (FSF) defined by the ratio of D$\sub$max/ of a given cone at SAD to MU were also measured. Result : The dose-response linearity of the Si detector was almost perfect. Its sensitivity decreased with increasing dose rate but stable for high dose rate like as 100MU/min and higher even though dose out of field could be a little bit overestimated because of low dose rate. Method determining beam axis by two orthogonal profiles was simple and gave 0.05mm accuracy. Adjustment of depth of the detector in a water phantom by insertion and remove of some acryl pates under an auxiliary water tank was also simple and accurate. TMR, OAR and FSF measured by Si detector were sufficiently accurate for application to treatment planning of linac-based stereotactic radiosurgery. OAR in field was nearly independent of depth. Conclusion : The Si detector was appropriate for dosimetry of small circular fields for linac-based stereotactic radiosurgery. The beam axis could be determined by two orthogonal dose profiles. The adjustment of depth of the detector in water was possible by addition or removal of some acryl plates under the auxiliary water tank and simple. TMR, OAR and FSF were accurate enough to apply to stereotactic radiosurgery planning. OAR data at one depth are sufficient for radiosurgery planning.

  • PDF

The Influence of Hydrogen Loading on Radiation Sensitivity of Fiber Bragg Gratings (광섬유 브래그 격자의 방사선 민감도에 대한 수소로딩의 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2461-2465
    • /
    • 2013
  • This paper investigates the influence of hydrogen loading process on the radiation sensitivity of fiber Bragg gratings (FBG). We made the FBG inscribed in the same commercial Ge-doped fiber with different hydrogen loading periods. We measured the Bragg wavelength shift (BWS) of the FBG exposed to gamma-radiation up to a dose of 18 kGy, and evaluated the change of full width at half maximum (FWHM) and the FBG temperature sensitivity coefficient after irradiation. Varying hydrogen loading parameter led to BWS differences up to nearly a factor of two.

Polarization Characteristics of Polymers: Poly(vinylchloride), Poly(ethyleneterephthalate), Poly(propylene), and Poly(carbonate) (고분자물질들의 분극 특성: Poly(vinylchloride), Poly(ethyleneterephthalate), Poly(propylene), Poly(carbonate))

  • Choi, Chil-Nam;Yang, Hyo-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.19-25
    • /
    • 2002
  • We measured the variations of potentials and current densities for several polymers. The results were carefully examined to identify various factors such as temperature and pH to influence the potential and rate. The Tafel slope for anodic dissolution was determined by the polarization effect under these conditions. The optimum conditions were established for each case. The second anodic current density peak and maximum current density were designated as the relative polarization sensitivity $(I_r/I_f)$. The mass-transfer coefficient value $({\alpha})$ was determined by the Tafel slope for anodic dissolution on the basis of the polarization effect under optimum conditions.

Parameters of Runoff and Soil Erosion in the Burnt Mountains, Naksansa (낙산사 산불지역의 유출 및 토양침식 인자)

  • Park, Sang-Deog;Cho, Jae-Woong;Shin, Seung-Sook;Lee, Kyu-Song;Kim, Yun-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.603-607
    • /
    • 2006
  • 최근 산불발생이 증가하고, 그에 따른 피해가 증가하고 있다. 또한 산불 발생지역의 토양침식으로 인한 2차적인 재해위험이 예상됨에 따라 산불 지역의 토양침식과 영향인자들에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 낙산사 산불지역의 산지사면에 10개의 소규모 조사구를 설치하고 강우에 따른 토사유출량을 조사하였다. 토양침식 매개변수를 강우인자(강우량, 강우강도, 강우에너지), 지형인자(면적, 사면경사, 사면길이, 길이경사인자), 식생인자(전체피복도, 식생지수), 토양인자(투수계수, 유효입경, 유기물함량, 토심)로 구분하여 각각의 토양침식에 대한 관계를 분석하고, 시간경과에 따른 토양침식의 관계도 분석하였다. 강우강도와 강우량이 커짐에 따라 토양침식민감도에 대한 식생피복도의 영향이 더욱 가중되며, 식생 회복이 빠른 지역과 그렇지 않은 지역에서의 시간경과에 따른 누적 토양침식량의 변화는 크게 차이를 보였다. 낙산사 산불지역에서의 강우에 따른 토양침식은 강우에너지와 식생피복도의 관계가 가장 높았다.

  • PDF

Measurement Uncertainty Analysis of a Turbine Flowmeter for Fuel Flow Measurement in Altitude Engine Test (엔진 고공 시험에서 연료 유량 측정용 터빈 유량계의 측정 불확도 분석)

  • Yang, In-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Measurement uncertainty analysis of fuel flow using turbine flowmeter was performed for the case of altitude engine test. SAE ARP4990 was used as the fuel flow calculation procedure, as well as the mathematical model for the measurement uncertainty assessment. The assessment was performed using Sensitivity Coefficient Method. 11 parameters involved in the calculation of the flow rate were considered. For the given equipment setup, the measurement uncertainty of fuel flow was assessed in the range of 1.19~1.86 % for high flow rate case, and 1.47~3.31 % for low flow rate case. Fluctuation in frequency signal from the flowmeter had the largest influence on the fuel flow measurement uncertainty for most cases. Fuel temperature measurement had the largest for the case of low temperature and low flow rate. Calibration of K-factor and the interpolation of the calibration data also had large influence, especially for the case of very low temperature. Reference temperature, at which the reference viscosity of the sample fuel was measured, had relatively small contribution, but it became larger when the operating fuel temperature was far from reference temperature. Measurement of reference density had small contribution on the flow rate uncertainty. Fuel pressure and atmospheric pressure measurement had virtually no contribution on the flow rate uncertainty.

Performance of the heat flux sensor using thermoelectric semiconductor material (半導體 熱電材料를 利용한 熱流束 測定 센서의 性能)

  • 황동원;정평석;주해호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.622-629
    • /
    • 1988
  • In order to improve the sensitivity of the wafer type heat flux sensor, some heat flux sensors were manufactured and examined by using thermoelectric semiconductor material (bismuth telluride) whose Seebck coefficient is much larger than those of metallic thermocouple materials. Because the thermoelectric element cannot be bended or welded, a peculiar sensor structure and manufacturing process were designed. As a result, it is revealed that the characteristic sensitivity of the manufactured sensor is about 10 times larger than that of marketed sensor even though there are some troubles in stiffness for reciprocal use. If we make this kind of sensors smaller and thinner, it will be a useful method to measure the local heat flux from the surface of complex configuration.

A High Precision Pulsed Field Magnetometer for Magnetic Properties Measurements of Rare Earth Magnets (희토류 영구자석의 자성측정을 위한 고감도 펄스마그네토미터)

  • Kim, Y.B.;Kapustin, G.A.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.250-255
    • /
    • 2005
  • A 8 MA/m-class pulsed field magnetometer has been constructed by composing a pulsed field magnet, a pickup coil, analog integrators, a digital storage oscilloscope and a personal computer. For precision measurements, a 3-axis compensation principle has been applied for the fabrication of pickup coil, and the compensation level of the order of $10^{-6}$ and the sensitivity of $5{\cdot}10^{-7}\;Am^2$ for magnetic moment have been obtained. The high sensitivity of the magnetometer is good enough for measurements of magnetic properties of rare earth magnets in small size or thin films shorter than $3\;mm{\phi}$ in diameter.

A Temperature-Compensated Hygrometer Using Resistive Humidity Sensors (전기 저항식 습도 센서를 이용한 온도 보상된 습도계 설계)

  • Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.27-32
    • /
    • 2006
  • A temperature-compensated hygrometer has been developed using resistive humidity sensors. It consist of a sine wave generator, logarithm converters, rectifiers, and amplifiers. The hygrometer accomplishes the linearization and temperature compensation of sensor characteristics. The theory of operation is presented and experimental results are used to verify theoretical predictions. The experimental results show that the conversion sensitivity of the hygrometer is about 24.8 mV/%RH and the linearity error of the conversion characteristic is less than 17.2 % over a relative humidity range from 30 to 80 %RH. The results also show that the temperature coefficient of the output voltage is less than $10149ppm/^{\circ}C$ over a temperature range from 22 to $40^{\circ}C$.

Study on a cavity ring-down spectrometer with continuous wave laser sources (연속발진 레이저를 이용한 공동 광자감쇠 분광기 연구)

  • 유용심;한재원;김재완;이재용;이해웅
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.240-244
    • /
    • 1998
  • Cavity ring-down spectroscopy (CRDS) is a high-sensitive laser spectroscopic technique capable of measuring concentrations of trace gases. We have demonstrated a new design of the CRDS spectrometer with a continuous wave (CW) laser. The ring-dwon signal is produced through blocking the incident CW laser by scanning the cavity length fast toward off-resonance iwth PZT (piezoelectric transducer). We have also measured an absorption spectrum of acetylene overtone transitions near 570 nm at the pressure of 2700 Pa, and the minimum detectable absorption coefficient has been found to be about $3{\times}10^{-9}\cm^{-1}$.

  • PDF