• Title/Summary/Keyword: 간헐 분사

Search Result 12, Processing Time 0.035 seconds

A Study on the Correlation of Droplets Size and Velocity of the Pintle Type Gasoline Injector with Intermittent Injection (간헐적으로 분사되는 핀틀형 가솔린 분사기의 액적크기와 속도 상관관계에 관한 연구)

  • Kang, S.J.;Kim, W.T.
    • Journal of ILASS-Korea
    • /
    • v.3 no.1
    • /
    • pp.34-42
    • /
    • 1998
  • The correlation between the droplets size and the velocity are investigated for an intermittent spray of the pintle type fuel injector employed in a port injection gasoline engine. The analysis such as the mean droplet size, SMD, and velocity under the fixed injection period and varied fuel pressures are conducted utilizing PDPA systems. As results, the experimental data obtained, show that the larger droplet sizes. the higher velocities during the spray tip arrival time, and that at Z=70mm, r=8mm, both droplet sizes and velocities are peak. At the upstream, flow of droplets are dominated by injection pressure, which are more effected inertia force of droplets at the downstream of Z=70mm.

  • PDF

Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part II : Reacting Flowfield (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part II : 반응 유동장)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.879-888
    • /
    • 2009
  • Unsteady three-dimensional reacting flowfield generated by transverse hydrogen injection into a supersonic mainstream is numerically investigated using DES and finite-rate chemistry model. Comparisons are made with experimental results to investigate the turbulent reacting flow physics. The numerical OH distribution describes well the experimental OH-PLIF result, while the numerical ignition delay time shows some disparity due to the restricted available experimental data. The intermittency phenomena are identified by the comparative analysis between RANS and DES. Those effects are also quantified by the temperature distributions along streamlines and superimposed OH mass fraction along with time.

Intermittent Spray Characteristics of the Injection Nozzle for a Gasoline Engine (가솔린 엔진용 분사노즐의 간헐적인 분무특성)

  • 김원태;오제하;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.128-136
    • /
    • 1997
  • Spray characteristics of a fuel injector have an important effect upon engine power and emission. Thus this study was investigated the spray characteristics of the intermittent injection using a gasoline fuel injector. Image processing system and PDA system were utilized for visualization of a spray behavior and measurements of a droplet size and velocity, respectively. Fuel injection duration was fixed with 3ms and injection pressure was varied such as 250kPa, 300kPa, 350kPa. for a high fuel injection pressure, spray tip arrival time was fluctuated at a vigorously disintegrated cross section. Axial velocity was linear correlated with fuel droplet size in the time interval of an injected main spray at spray downstream.

  • PDF

Study for Failure Examples of Injector, Idle Speed Actuator and Gasket in LPi System Vehicle (LPi 시스템 자동차의 인젝터, 공회전 액추에이터 및 개스킷 고장사례 연구)

  • Lee, Il-Kwon;Cho, Seung-Hyun;Kim, Han-Goo;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.48-53
    • /
    • 2012
  • The purpose of this paper studies the failure cases including with system of liquefied phase injection in liquified petroleum gas vehicle. The first case, resulting with inspection the injector of LPG, it occasionally certified the injection damage phenomenon that the fuel efficiency(km/l) was decreased to 5% by carbon deposit with injector hole when the driver operates the vehicle. The second case, it certified the interference phenomenon of air flow with carbon deposit in ISA system control for idle speed of engine and throttle body suppling air into engine. As a result, the fuel efficiency was decreased 7%. The third case, the outer air during intake stroke was intermittently flowed in this gasket gap because of weaken adhesion power phenomenon for cylinder block by intake manifold gasket tearing. Consequentially, it certified the decrease for fuel efficiency to 3% by risen the amount of fuel injection as the air inflow quantity. These failure examples reduced the power performance of engine and the fuel efficiency of vehicle. It have to minimize of failure phenomenon preparing through quality management.

Concentration measurements of the premixed mixture by using a hot wire concentration probe (열선농도 프로우브를 이용한 여혼합기의 순간농도 측정에 관하여)

  • 박경석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.1
    • /
    • pp.12-17
    • /
    • 1985
  • 주위기체와 다른 기체를 간헐적으로 또는 단발로 분사한 경우, 분류내의 분사체의 농도는 시간에 따라 급격히 변화한다. 수ms인 전자식기체 채취밸브를 이용해서 기체를 채취하고, 가스마토그 라프 등에 의해 가스분석을 행하는 방법이 있고 주로 피스톤식 내연기관의 연소실내 농도의 측 정에 이용되고 있다. 이 방법은 밸브 열립시간을 단축시켜도 약 1ms가 한도이고 시간분해능력도 1ms정도가 최단시간이다. 또 동일한 장소에서 농도의 시간경과를 얻는 데에는 각각의 시간에 대해서 기체의 채취와 분석을 행하지 않으면 안되어 실제시간의 농도측정이 불가능하다는 결점이 있다. 최근 레이저 응용기술의 진보에 의해 라만산란, 레리산란, CARS법 등의 농도순간측정이 가능해지고 있고, 점차 현실화되어가고 있다. 이들의 방법은 국소의 순간농도뿐만 아니라 온도의 동시측정도 가능하게 하는 특징을 갖고있다. 그러나 레이저에 의한 측정장치는 현시정에서는 아직 가격이 고가이고 광학계의 설치 등, 실험상의 조작이 복잡한 것 등의 결점을 갖고 있다. 본 고에서는 최근 진전이 현저하고 실용화에 대한 확신을 갖고 있는 열선농도Probe에 의한 순간농 도의 측정방법을 소개하고자 한다.

  • PDF

SI Engine Hydrocarbon Emissions Reduction with Secondary Air Injection and Coolant Control (2차 공기분사 및 냉각수제어에 의한 SI 엔진의 탄화수소 배기저감)

  • 박기수;조영진;박심수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.51-58
    • /
    • 2000
  • It is well known that the majority of the emissions measured from vehicle exhaust in the US Federal Test Procedure(FTP-75) are emitted during the first 60 seconds. This paper describes an experimental study on SI engine emissions reduction after cold start with interval secondary air injection and coolant control. Secondary air injection after cold start to reduce exhaust emissions causes an exothermic reaction at the exhaust port and gives sufficient air to the catalyst. For that reason engine-out emissions oxidized in the exhaust port and the rapid heating of a catalytic converter after cold start with CSAI and ISAI are estimated. The influence of the coolant temperature on SI engine emissions has been estimated. In the present studycoolant control of the cylinder head tempeature is used to investigate the effect of coolant temperature on SI engine emissions. The results show that engine-out hydrocarbon and carbon monoxide emissions are considerably reduced with interval secondary air injection and coolant control.

  • PDF

Failure Case Studies of Sensors for Electronic Controlled Engine in LPG Vehicle (LPG 자동차에서 전자제어엔진용 센서의 고장사례에 관한 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • The purpose of this paper analyzes and investigates the failure case studies of electronic control sensors for a LP gas engine. The malfunction of crank angle sensor, which controls a fuel injection volume of LP gas, displays an irregular and non-uniform pulse wave form. The pulse form, which is related to the noise of the crank angle sensor, displays at the rectangular peak with a saw-toothed shape and is intermittently generated with a level of 2.46V noise signal. The malfunction of No. 1 TDC sensor in which is caused from the internal disorder affects to the reduction of engine power and engine stop suddenly. If the malfunction of oxygen sensor is occurred due to a wiring problem of a sensor connector, the LP gas vehicle may produce a shaking and disharmony of an engine because of no signal supply from the oxygen sensor. The air cleaner replica produces the clogging of continuous supply of fresh air. This may cause the retardation of vehicle acceleration and engine disharmony intermittently.

Impinging Atomization of Intermittent Gasoline Sprays (간헐 가솔린 분무의 충돌에 의한 미립화 촉진)

  • 원영호;임치락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.174-181
    • /
    • 1998
  • Experimental and analytical studies are presented to characterize the break-up mechanism and atomization processes of the intermittent- impinging-type nozzle. Gasoline jets passing through the circular nozzle with the outlet diameter of 0.4mm and the injection duration of 10ms are impinged on each other. The impingement of fuel jets forms a thin liquid sheet, and the break-up of the liquid sheet produces liquid ligaments and droplets subsequently. The shape of liquid sheets was visualized at various impinging velocities and angles using the planer laser induced fluorescence (PLIF) technique. Based on the Kelvin-Helmholtz wave instability theory, the break-up length of liquid sheets and the droplet diameter are obtained by the theoretical analysis of the sheet disintegration. The mean diameter of droplet is also estimated analytically using the liquid sheet thickness at the edge and the wavelength of the fastest growing wave. The present results indicate that the theoretical results are favorably agreed with the experimental results. The size of droplets decreases after the impingement as the impinging angle or the injection pressure increase. The increment of the injection pressure is more effective than the increment of the impinging angle to reduce the size of droplets.

  • PDF

Feasibility Study of Intermittent Slow Sand Filtration for Agricultural Reuse of Reclaimed Water (농업적 용수재이용을 위한 간헐분사 완속모래여과 하수재처리 효율 평가)

  • 윤춘경;정광욱;함종화;황하선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.160-170
    • /
    • 2003
  • A pilot study was performed to examine the feasibility of intermittent slow sand filtration for agricultural reuse of reclaimed water. The effluent of biofilter for 16-unit apartment was used as influent to the slow sand filtration system at 0.6 $m^3$/day loading rate using 15 seconds spray in every 10 minutes on the about 1 $m^2$ surface area and 0.5 m depth. The influent concentrations of total coliform (TC), fecal coliform (FC) and E. coli were in the range of 10.000 MPN/100 mL. and they were reduced to less than 1,000 MPN/100 mL after filtration with average of 320, 270, and 154 MPN/100 mL, respectively, showing over 95 % removal. Turbidity and SS were improved effectively and their average concentration was reduced to 0.8 NTU and 1.7 mg/L, respectively, and removal rate was about 50 %. Average BOD and COD concentrations were also reduced substantially to 2.6 and 25.8 mg/L with about 55 and 21 % removal rate, respectively. Nutrients removal was relatively low and removal rate for T-N and T-P was low however, remaining nutrients might be beneficial and less concerned in case of agricultural reuse. The concentration of biofilter effluent used in this experiment was in the range of secondary treatment effluent but slightly stronger than the one from existing wastewater treatment plants (WWTPs). Therefore, intermittent slow sand filtration might be also applicable to the effluent from WWTPs as long as its agricultural reuse is available. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, the intermittent slow sand filtration was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water. This paper is a preliminary result from pilot study and further investigations are recommended on the optimum design parameters before full scale application.

Experimental Study on Characteristics of Steam Condensation in a Sub-cooled Water Pool (과냉각수조에서 증기응축 특성에 관한 실험적 연구)

  • Kim, Hwan-Yeol;Cho, Seok;Song, Chul-Hwa;Chung, Moon-Ki;Choi, Sang-Min
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.298-308
    • /
    • 1999
  • Experimental study on characteristics of direct contact condensation of steam discharged into a sub-cooled water pool has been performed using five different sizes of horizontal nozzle over a wide range of steam mass fluxes and pool temperatures. Steam condensation phenomena have been observed visually and by taking pictures of steam jets using a high speed video camera. Two different steam jet shapes such as ellipsoidal shape and conical shape were typically observed for a stable steam jet, depending on the steam mass flux and pool temperature. The steam jet expansion ratio and the steam jet length as well as the condensation heat transfer coefficients were determined. The effect of steam mass flux, pool temperature, and nozzle diameter on these parameters were also discussed. Empirical correlations for the steam jet lengths and the condensation heat transfer coefficients as a function of steam mass flux and condensation driving potential were established. The axial and radial temperature distributions in steam jet and in surrounding water were measured. The effect of steam mass flux, pool temperature, and nozzle diameter were also discussed. The condensation regime map, which consists of six regimes such as chugging, transient chugging, condensation oscillation, stable condensation, bubble condensation oscillation, and intermittent oscillation condensation, were established. In addition, the dynamic pressures at the pool wall were measured. The close relation of dynamic pressure and steam condensation mode, which is also dependent on steam mass flux and pool temperature, was found.

  • PDF