• Title/Summary/Keyword: 간접칼만필터

Search Result 10, Processing Time 0.029 seconds

Kalman Filter Design For Aided INS Considering Gyroscope Mixed Random Errors (자이로의 불규칙 혼합잡음을 고려한 보조항법시스템 칼만 필터 설계)

  • Seong, Sang-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.47-52
    • /
    • 2006
  • Using the equivalent ARMA model representation of the mixed random errors, we propose Klaman filter design methods for aided INS(Inertial Navigation System) which contains the gyroscope mixed random errors. At first step, considering the characteristic of indirect feedback Kalman filter used in the aided INS, we perform the time difference of equivalent ARMA model. Next, according to the order of the time differenced ARMA model, we achieve the state space conversion of that by two methods. If the order of AR part is greater than MA part, we use controllable or observable canonical form. Otherwise, we establish the state apace equation via the method that several step ahead predicts are included in the state variable, where we can derive high and low order models depending on the variable which is compensated from gyroscope output. At final step, we include the state space equation of gyroscope mixed random errors into aided INS Kalman filter model. Through the simulation, we show that both the high and low order filter models proposed give less navigation errors compared to the conventional filter which assume the mixed random errors as white noise.

Performance Improvement of an Extended Kalman Filter Using Simplified Indirect Inference Method Fuzzy Logic (간편 간접추론 방식의 퍼지논리에 의한 확장 칼만필터의 성능 향상)

  • Chai, Chang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2016
  • In order to improve the performance of an extended Kalman filter, a simplified indirect inference method (SIIM) fuzzy logic system (FLS) is proposed. The proposed FLS is composed of two fuzzy input variables, four fuzzy rules and one fuzzy output. Two normalized fuzzy input variables are the variance between the trace of a prior and a posterior covariance matrix, and the residual error of a Kalman algorithm. One fuzzy output variable is the weighting factor to adjust for the Kalman gain. There is no need to decide the number and the membership function of input variables, because we employ the normalized monotone increasing/decreasing function. The single parameter to be determined is the magnitude of a universe of discourse in the output variable. The structure of the proposed FLS is simple and easy to apply to various nonlinear state estimation problems. The simulation results show that the proposed FLS has strong adaptability to estimate the states of the incoming/outgoing moving objects, and outperforms the conventional extended Kalman filter algorithm by providing solutions that are more accurate.

3-Dimensional Attitude Estimation using Low Cost Inertial Sensors and a Magnetic Compass (저가 관성센서와 마그네틱 컴퍼스를 이용한 3차원 자세추정)

  • Park Sang-Kyeong;Kang Hee-Jun;Suh Young-Soo;Kim Han-Sil;Son Young-Duk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1429-1432
    • /
    • 2005
  • This work is towards the development of a low-cost, small-sized inertial navigation system(INS) which consists of 3 accelerometers, 3 semiconductor gyros and a magnetic compass sensor. This paper explains in detail the structure of the developed system and proposes a 3 dimensional attitude estimation algorithm with Indirect Kalman Filter. The experiments are performed with the developed system attached to a 6 DOF robot for showing the effectiveness of the algorithm.

  • PDF

Analysis of Burst Detection Based on Adjustable Sampling Interval (가변적 샘플링 기반한 누수탐지 분석)

  • Kim, Seong Won;Jeong, An Chul;Jung, Kwan Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.292-292
    • /
    • 2015
  • 최근 상수관망의 물 공급 과정에서 여러 가지 원인으로 인해 물의 손실에 따른 비용손실이 발생하고 있다. 급수시스템의 경우에는 파열 및 누수발생과 관련되어 사용되는 비용은 분실되는 물의 직적비용, 급수시스템 수리에 따른 공사비용, 공급중지와 관련된 사회적 비용이 있다. 파열 및 누수를 신속하게 감지하는 것은 물 손실에 의해 발생하는 직접 및 간접비용을 줄일 수 있다. 그러나 국내의 경우 정기적으로 매년 1회 시행되는 상수관로에 대한 누수탐지작업으로 신속한 감지 및 즉각적인 대처를 할 수 없는 실정이다. 본 연구에서는 수도관에서 발생되는 파열 및 누수를 탐지하기 위하여 블록 유입부에 설치된 유량계의 샘플링 간격의 영향에 대한 연구를 실시하였다. 적응칼만필터 알고리즘을 이용한 가변 샘플링 간격은 최대 최소 샘플링 간격과 정규화된 잔차의 상한값과 하한값 도입하여 제시하였다. 샘플링 간격의 효과를 강조하기 위해 사인 곡선, 사다리꼴 파열, 불규칙 잡음으로 구성된 가상의 유량 데이터로 알고리즘에 대한 검증실험을 진행하였고 실험 결과 샘플링 간격이 길수록 긴 시간 동안 누수 및 파열에 대한 작은 잔차를 발생시켰다. 모의실험결과 샘플링 주기를 변경함으로써 분석에 필요한 유량 데이터의 샘플수를 크게 줄일 수 있었다.

  • PDF

Numerical Stability Improvement Technique for Indirect Feedback Kalman Filter in Delayed-Measurement Systems (시간지연을 고려한 간접 되먹임 구조 칼만필터의 수치안정성 향상 기법)

  • Nam, Seongho;Sung, Changky;Kim, Taewon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • Most of weapon systems use aided navigation system which integrates inertial navigation and aiding sensors to compensate the INS errors increasing with the passage of time. Various aid sensors can be applied such as Global Navigation Satellite System (GNSS), radar, barometer, etc., but there might exist time delay caused by signal processing or transferring aid information. This time delay leads out-of-sequence measurements (OOSM) systems. Previously, optimal and suboptimal measurment update method for OOSM systems, where the time delay length are known, are proposed. However, previous algorithm does not guarantee the positive definite property of covariance matrix. In order to improve numerical stability for aided navigation using delayed-measurement, this paper proposes a new measurement covariance update algorithm be similar to Joseph-form in Kalman filter. Futhermore, we propose how to implement it in indirect feedback Kalman filter structure, which is commonly used in aided navigation systems, for time-delayed measurement systems. Simulation and vehicle test results show effectiveness of a proposed algorithm.

Underwater Hybrid Navigation Algorithm Based on an Inertial Sensor and a Doppler Velocity Log Using an Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 알고리듬)

  • 이종무;이판묵;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), and a Doppler velocity log (DVL), accompanied by a magnetic compass. The errors of inertial measurement units increase with time, due to the bias errors of gyros and accelerometers. A navigational system model is derived, to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 20. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors, and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o,f equations of motion of SAUV, using a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance, by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass, and a depth sensor. The error of the estimated position still slowly drifts in the horizontal plane, about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

Attitude Estimation for Model Helicopter Using Indirect Kalman Filter (간접형 칼만필터에 의한 모형 헬리콥터의 자세추정)

  • Kim, Yang-Ook;Roh, Chi-Won;Lee, Ja-Sung;Hong, Suk-Kyo;Lee, Kwang-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1120-1125
    • /
    • 2000
  • This paper presents a technique for estimating the attitude of a model helicopter at near hovering using a combination of inertial and non-inertial sensors such as gyroscope and potentiometer. To estimate the attitude of helicopter a simplified indirect Kalman filter based on sensor modeling is derived and the characteristics of sensors are studied, which are used in determining the optimal Kalman gain. To verify the effectiveness of the proposed algorithm simulation results are presented with real flight data. Our approach avoids a complex dynamic modeling of helicopter and allows for an elegant combination of various sensor data with different measurement frequencies. We also describe the method of implementation of the algorithm in the model helicopter.

  • PDF

Indirect Kalman Filter based Sensor Fusion for Error Compensation of Low-Cost Inertial Sensors and Its Application to Attitude and Position Determination of Small Flying robot (저가 관성센서의 오차보상을 위한 간접형 칼만필터 기반 센서융합과 소형 비행로봇의 자세 및 위치결정)

  • Park, Mun-Soo;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.637-648
    • /
    • 2007
  • This paper presents a sensor fusion method based on indirect Kalman filter(IKF) for error compensation of low-cost inertial sensors and its application to the determination of attitude and position of small flying robots. First, the analysis of the measurement error characteristics to zero input is performed, focusing on the bias due to the temperature variation, to derive a simple nonlinear bias model of low-cost inertial sensors. Moreover, from the experimental results that the coefficients of this bias model possess non-deterministic (stochastic) uncertainties, the bias of low-cost inertial sensors is characterized as consisting of both deterministic and stochastic bias terms. Then, IKF is derived to improve long term stability dominated by the stochastic bias error, fusing low-cost inertial sensor measurements compensated by the deterministic bias model with non-inertial sensor measurement. In addition, in case of using intermittent non-inertial sensor measurements due to the unreliable data link, the upper and lower bounds of the state estimation error covariance matrix of discrete-time IKF are analyzed by solving stochastic algebraic Riccati equation and it is shown that they are dependant on the throughput of the data link and sampling period. To evaluate the performance of proposed method, experimental results of IKF for the attitude determination of a small flying robot are presented in comparison with that of extended Kaman filter which compensates only deterministic bias error model.

Underwater Hybrid Navigation System Based on an Inertial Sensor and a Doppler Velocity Log Using Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 시스템)

  • Lee, Chong-Moo;Lee, Pan-Mook;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.149-156
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o.f. equations of motion of SAUV in a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass and a depth senor. The error of the estimated position still slowly drifts in horizontal plane about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

  • PDF

Comparison of Dynamic Origin Destination Demand Estimation Models in Highway Network (고속도로 네트워크에서 동적기종점수요 추정기법 비교연구)

  • 이승재;조범철;김종형
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.5
    • /
    • pp.83-97
    • /
    • 2000
  • The traffic management schemes through traffic signal control and information provision could be effective when the link-level data and trip-level data were used simultaneously in analysis Procedures. But, because the trip-level data. such as origin, destination and departure time, can not be obtained through the existing surveillance systems directly. It is needed to estimate it using the link-level data which can be obtained easily. Therefore the objective of this study is to develop the model to estimate O-D demand using only the link flows in highway network as a real time. The methodological approaches in this study are kalman filer, least-square method and normalized least-square method. The kalman filter is developed in the basis of the bayesian update. The normalized least-square method is developed in the basis of the least-square method and the natural constraint equation. These three models were experimented using two kinds of simulated data. The one has two abrupt changing Patterns in traffic flow rates The other is a 24 hours data that has three Peak times in a day Among these models, kalman filer has Produced more accurate and adaptive results than others. Therefore it is seemed that this model could be used in traffic demand management. control, travel time forecasting and dynamic assignment, and so forth.

  • PDF