• Title/Summary/Keyword: 각속도 센서

Search Result 126, Processing Time 0.025 seconds

Designed and Implement of the Discrete Time Kalman Filter for Speed Estimation of the Sensorless Hub Wheel Motor (속도센서가 없는 허브-휠 전동기의 속도추정을 위한 이산시간 칼만필터의 설계 및 구현)

  • Jeon, Yong-Ho;Yee, Gi-Seo;Cho, Whang
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.203-210
    • /
    • 2008
  • Since hub wheel BLDC Motor consisted of wheel and BLDCM (Brushless DC Motor) without gear reducer has high efficiency and low operation noise, it can be utilized to a driving wheel at some light rail systems. However, installing sensors for speedometer on a Hub-Wheel motor is not easy, so it requires a different speed control mechanism method for speed measurement. This paper introduces a speed control method based on simple mathematical model which uses discrete Kalman Filter to estimate and control the speed of the motor.

Gesture Input System in 3-D Space by Using Inertial Sensors (관성 센서를 이용한 공간상의 제스처 입력 시스템)

  • Cho, Sung-Jung;Bang, Won-Chul;Chang, Wook;Choi, Eun-Seok;Yang, Jing;Oh, Jong-Gu;Kang, Kyung-Ho;Cho, Joon-Kee;Kim, Dong-Yoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.709-711
    • /
    • 2004
  • 본 논문은 3차원 상에서 사용자의 동작을 관성센서로 입력받아 제스처를 인식하는 시스템을 소개한다. 사용자가 취한 제스처 동작은 관성 센서를 통하여 각속도 및 가속도 신호열로 변환된다. 궤적 추정 알고리즘은 이를 2차원 상의 동작 궤적으로 변환한다. 인식 알고리즘은 이 동작 궤적을 입력받아 베이지안 네트웍에 기반한 제스처 모델들로부터의 likelihood를 계산한 후, 최대 likelihood를 갖는 모델을 선택하여 인식을 수행한다. 16명의 필자로부터 13개의 제스처 동작을 각 24회씩 수집하여 실험한 결과 평균 99.4%의 인식률을 얻었다.

  • PDF

Analysis on Influence of Errors for Dual-axis Rotational Inertial Navigation System Performance (2축 회전형 관성항법장치 성능에 영향을 미치는 오차 분석)

  • Minsu Jo;Chanju Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.50-56
    • /
    • 2023
  • INS(Inertial Navigation System) calculates navigation information using a vehicle's acceleration and angular velocity without the outside information. However, when navigation is performed for a long time, navigation error gradually diverges and the performance decreases. To enhance INS's performance, the rotation of inertial measurement unit is developed to compensate error sources of inertial sensors, which is called RINS(Rotational Inertial Navigation System). This paper analyzes the influence of several errors for dual-axis RINS and the shows the results using simulation.

Pedestrian Walking Velocity Estimation based on Wearable Inertial Sensors and Lower-limb Kinematics (착용형 관성센서 및 인체 하지부 기구학 기반의 보행자 속도추정에 관한 연구)

  • Kim, Myeong Kyu;Kim, Jong Kyeong;Lee, Donghun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.799-807
    • /
    • 2017
  • In this paper, a new method is proposed for estimating pedestrians' walking velocity based on lower-limb kinematics and wearable inertial measurement unit (IMU) sensors. While the soles and ground are not in contact during the walking cycle, the walking velocity can be estimated by integrating the acceleration output of the inertial sensor mounted on the pelvis. To minimize the effects of acceleration measurement errors caused by the tilt of the pelvis while walking, the estimated walking velocity based on lower-limb kinematics is imposed as the initial value in the acceleration signal integration process of the pelvis inertial sensor. In the experiment involving outdoor walking for six minutes, sensor drift due to error accumulation was not observed, and the RMS error in the walking velocity estimation was less than 0.08 m/s.

Development and Evaluation of a System to Determine Position and Attitudes using In-Vehivle Seonsors (차량 내부 센서를 이용한 위치·자세 결정 시스템 구축 및 평가)

  • Kim, Ho Jun;Choi, Kyuong Ah;Lee, Im Pyeong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.57-67
    • /
    • 2013
  • GPS based car navigation systems show significant problems in such environment as a tunnel, a road surrounded by high buildings. In this study, we thus propose a method to determine positions and attitudes using only in-vehicle sensory data without a GPS. To check the feasibility of this method, we constructed a system to acquire in-vehicle sensory data and reference data simultaneously. We acquired test data using this system, estimated the trajectory based on the proposed method and evaluated the accuracy of both the sensory data and the trajectory. The speed and angular velocities provided by the in-vehicle sensors include 1.1 km/h and 0.8 deg/s RMS errors, respectively. The estimated trajectory using these data shows 20.8 m RMS errors for a 15 minute drive. In future, if we further combine additional sensors such as a camera and a GPS, we can achieve a high accurate navigation system at a low cost without an expensive high-grade external IMU.

Implementation of Rule-based Smartphone Motion Detection Systems

  • Lee, Eon-Ju;Ryou, Seung-Hui;Lee, So-Yun;Jeon, Sung-Yoon;Park, Eun-Hwa;Hwang, Jung-Ha;Choi, Doo-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.45-55
    • /
    • 2021
  • Information obtained through various sensors embedded in a smartphone can be used to identify and analyze user's movements and situations. In this paper, we propose two rule-based motion detection systems that can detect three alphabet motions, 'I', 'S', and 'Z' by analyzing data obtained by the acceleration and gyroscope sensors in a smartphone. First of all, the characteristics of acceleration and angular velocity for each motion are analyzed. Based on the analysis, two rule-based systems are proposed and implemented as an android application and it is used to verify the detection performance for each motion. Two rule-based systems show high recognition rate over 90% for each motion and the rule-based system using ensemble shows better performance than another one.

Data Analysis of Inertial Sensors for Train Positioning Detection System (열차위치검지 시스템을 위한 관성센서 데이터 분석 연구)

  • Kim, Seong Jin;Park, Sungsoo;Lee, Jae-Ho;Kang, Donghoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.

Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices (모바일용 저잡음 6축 관성센서 IC의 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.397-407
    • /
    • 2015
  • In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/${\sqrt{Hz}}$ of gyroscope sensor noise density.

무인항공기의 각속도 기반 자동비행제어시스템 개발

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Gi;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.7-14
    • /
    • 2005
  • This paper describes development of automatic flight control system for an unmanned target drone. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed. The performance of automatic flight control system is verified by flight test.

  • PDF

Design of Simple-structured Fuzzy Logic System based Driving Controller for Mobile Robot (단순구조 퍼지논리시스템을 이용한 이동 로봇의 주행 제어기 설계)

  • Choi, Byung-Jae;Jin, Sheng
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, we present an obstacle avoidance control algorithm for mobile robots based on SFLC (single-input fuzzy logic controller) with an efficient fuzzy logic look-up table to replace the traditional complicated operation. This method achieves better performance than traditional methods in terms of efficiency. The output of a SFLC leads the robot to the target automatically although many obstacles on the path. Our experiments show that the robot has good performance in the view of path tracking and other efficiency.