Browse > Article
http://dx.doi.org/10.7840/kics.2015.40.2.397

Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices  

Kim, Chang Hyun (School of Electrical & Electronic Engineering Yonsei University)
Chung, Jong-Moon (School of Electrical & Electronic Engineering Yonsei University)
Abstract
In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/${\sqrt{Hz}}$ of gyroscope sensor noise density.
Keywords
inertial sensor IC; gyroscope; low noise; quadrature error; modeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Perera, A. Zaslavsky, P. Christen, and D. Georgaopoulos, "Context aware computing for the internet of things: A survey," IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 414-454, 2014.   DOI   ScienceOn
2 C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and D. Georgakopoulos, "Sensor search techniques for sensing as a service architecture for the internet of things," IEEE Sensors J., vol. 14, no. 2, pp. 406-420, Feb. 2014.   DOI   ScienceOn
3 S. W. Lloyd, S. Fan, and M. J. F. Digonnet, "Experimental observation of low noise and low drift in a laser-driven fiber optic gyroscope," J. Lightw. Technol., vol. 31, no. 13, pp. 2079-2085, Jul. 2013.
4 H. Ma, W. Wang, Y. Ren, and Z. Jin, "Low-noise low-delay digital signal processor for resonant micro optic gyro," IEEE Photonics Technol. Lett., vol. 25, no. 2, pp. 198-201, Jan. 2013.   DOI   ScienceOn
5 F. Hakimi and J. D. Moores, "RIN-reduced light source for ultra-low noise interferometric fibre optic gyroscopes," Electron. Lett., vol. 49, no. 3, pp. 205-207, Jan. 2013.   DOI   ScienceOn
6 K. Lan and W. Shin, "Using smart-phones and floor plans for indoor location tracking," IEEE Trans. Human-Machine Syst., vol. 44, no. 2, pp. 211-221, Apr. 2014.   DOI   ScienceOn
7 Z. Y. Guo, L. T. Lin, Q. C. Zhao, Z. C. Yang, H. Xie, and G. Z. Yan, "A lateral-axis microelectromechanical tuning - fork gyroscope with decoupled comb drive operating at atmospheric pressure," J. Microelectromech. Syst., vol. 19, no. 3, pp. 458-468, Jun. 2010.   DOI   ScienceOn
8 A. Walther, C. L. Blanc, N. Delorme, Y. Deimerly, R. Anciant, and J. Willemin, "Bias contributions in a MEMS tuning fork gyroscope," J. Microelectromech. Syst., vol. 22, no. 2, pp. 303-308, Apr. 2013.   DOI   ScienceOn
9 M. S. Weinberg and A. Kourepenis, "Error sources in in-plane silicon tuning-fork MEMS gyroscopes," J. Microelectromech. Syst., vol. 15, no. 3, pp. 479-491, Jun. 2006.   DOI   ScienceOn
10 X. Li, X. Chen, Z. Song, P. Dong, Y. Wang. J. Jiao, and H. Yang, "A microgyroscope with piezoresistance for both high-performance coriolis-effect detection and seesaw-like vibration control," J. Microelectromech. Syst., vol. 15, no. 6, pp. 1698-1707, Dec. 2006.   DOI   ScienceOn
11 L. Aaltonen, A. Kalanti, M. Pulkkinen, M. Paavola, M. Kamarainen, and K. A. I. Halonen, "A 2.2mA $4.3mm^2$ ASIC for a 1000degree/s 2-Axis capacitive microgyroscope," IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1682-1692, Jul. 2011.   DOI   ScienceOn
12 A. Sharma, M. F. Zaman, and F. Ayazi, "A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes," IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1790-1802, Aug. 2007.   DOI   ScienceOn
13 A. Sharma, M. F. Zaman, and F. Ayazi, "A sub-0.2degrees/hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1593-1608, May 2009.   DOI   ScienceOn
14 J. Raman, E. Cretu, P. Rombouts, and L. Weyten, "A closed-loop digitally controlled MEMS gyroscope with unconstrained sigmadelta force-feedback," IEEE Sensors J., vol. 9, no. 3, pp. 297-305, Mar. 2009.   DOI   ScienceOn
15 A. Norouzpour-Shirazi, M. F. Zaman, and F. Ayazi, "A digital phase demodulation technique for resonant MEMS gyroscopes," IEEE Sensors J., vol. 14, no. 9, pp. 3260- 3266, Sept. 2014.   DOI
16 S. Park and R. Horowitz, "Adaptive control for the conventional mode of operation of MEMS gyroscopes," J. Microelectromech. Syst., vol. 12, no. 1, pp. 101-108, Feb. 2003.   DOI   ScienceOn
17 R. P. Leland, "Adaptive control of a MEMS gyroscope using lyapunov methods," IEEE Trans. Control Syst. Technol., vol. 14, no. 2, pp. 278-283, Mar. 2006.   DOI   ScienceOn
18 S. Sonmezoglu, S. E. Alper, and T. Akin, "An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth," J. Microelectromech. Syst., vol. 23, no. 2, pp. 284-297, Apr. 2014.   DOI   ScienceOn
19 M. Kirrkko-Jaakkola, J. Collin, and J. Takala, "Bias prediction for MEMS gyroscopes," IEEE Sensors J., vol. 12, no. 6, pp. 2157- 2163, Jun. 2012.   DOI   ScienceOn
20 Z. W. Wu, M. L. Yao, H. G. Ma, and W. M. Jia, "De-noising MEMS inertial sensors for low-cost vehicular attitude estimation based on singular spectrum analysis and independent component analysis," Electron. Lett., vol. 49, no. 14, Jul. 2013.
21 Y. Dong, M. Kraft, and W. Redman-White, "Micromachined vibratory gyroscopes controlled by a high-order bandpass sigmadelta modulator," IEEE Sensors J., vol. 7, no. 1, pp. 59-69, Jan. 2007.   DOI   ScienceOn
22 M. F. Zaman, A. Sharma, and F. Ayazi, "The resonating star gyroscope a novel multipleshell silicon gyroscope with sub-5 deg/hr allan deviation bias instability," IEEE Sensors J., vol. 9, no. 6, pp. 616-624, Jun. 2009.   DOI
23 J. Georgy, A. Noureldin, M. J. Korenberg, and M. M. Bayoumi, "Modeling the stochastic drift of a MEMS-Based gyroscope in Gyro/ Odometer/GPS integrated navigation," IEEE Trans. Intell. Transportation Syst., vol. 11, no. 4, Dec. 2010.
24 E. Tatar, S. E. Alper, and T. Akin, "Quadrature -error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes," J. Microelectromech. Syst., vol. 21, no. 3, pp. 656-667, Jun. 2012.   DOI   ScienceOn
25 S. Lee, S. Park, J. Kim, S. Lee, and D. Cho, "Surface/bulk micromachined single-crystalline -silicon micro-gyroscope," J. Microelectromech. Syst. vol. 9, no. 4, pp. 557-567, Dec. 2000.   DOI   ScienceOn
26 M. Saukoski, L. Aaltonen, and K. A. I. Halonen, "Zero-rat output and quadrature compensation in vibratory MEMS gyroscopes," IEEE Sensors J., vol. 7, no. 12, pp. 1639- 1652, Dec. 2007.   DOI   ScienceOn