• 제목/요약/키워드: 가중치 지지도

검색결과 50건 처리시간 0.027초

신경망에 기반한 개인화 기술 (A Personalization Technology Based on Neural Networks)

  • 김종수;도영아;류정우;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.28-30
    • /
    • 2001
  • 현 인터넷상에서 취향에 맞는 항목(상품) 정보를 사용자에게 추천해 주는 개인화 기술은 대부분 특정 사용자와 유사한 선호도를 갖는 다른 사용자들의 특정 항목에 대한 선호도를 바탕으로 항목의 선호도를 추정하는 협력적 추천 기술을 적용하고 있다. 이중 최근접 이웃 방법은 적용하기가 용이한 반면 항목간의 가중치를 고려하지 못함으로써 추천의 정확도가 크게 떨어지는 문제점이 있다. 연관규칙 방법은 다른 항목에 대한 선호도 자료로부터 데이터 마이닝 기법을 적용하여 항목 선호에 대한 연관규칙을 추출하고 그 규칙을 사용하여 어떤 항목의 선호도를 추정한다. 따라서 항목들 간의 중요도가 연관규칙의 지지도나 신뢰도 등으로 나타난다고 할 수 있으나, 단순히 항목들간의 연관관계 즉 표면적인 연관관계에 의하여 선호도를 결정함으로써 항목들간의 어떤 내용적인 공통성 또는 어떤 상위개념에 의한 선호도가 고려되지 않음으로써 역시 정확도가 떨어지는 문제점이 있다. 본 논문에서는 추천의 정확도를 향상시키기 위한 신경망 추천 방법에 대해 분석하고, 내용기반 추천과 협력적 추천을 병합한 신경망 추천 방법을 제안한다. 또한, 다른 협력적 추천 방법과의 비교를 통하여 본 추천 방법의 장점과 성능의 우수함을 보인다.

  • PDF

지지벡터기계와 카이제곱 통계량을 이용한 스팸 블로그(Splog) 판별 시스템 (A Splog Detection System Using Support Vector Machines and $x^2$ Statistics)

  • 이성욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.905-908
    • /
    • 2010
  • 본 연구의 목적은 웹 환경에서 스팸 블로그(Splog)를 자동으로 판별하는 시스템을 개발하는 것이다. 먼저 블로그의 HTML을 제거한 후 품사를 부착하였다. 어휘/품사 쌍을 자질로 사용하였으며 카이제곱 통계량을 이용하여 유용한 자질을 선택하였다. 선택된 자질의 가중치를 벡터로 표현한 후, 지지벡터 기계(Support Vector Machines)를 학습하여 자동으로 스팸 블로그를 판별하는 시스템을 제안하였으며, SPLOG 데이터 집합으로 실험한 결과 F1척도로 90.5%의 정확률을 얻었다.

  • PDF

웹 로그에 대한 온라인 연관 규칙 기법 (Online Association Rule Technique for Web Access Log)

  • 박은주;권혜련;김은주;이일병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (상)
    • /
    • pp.333-336
    • /
    • 2001
  • 본 논문에서는 웹에서 온라인상으로 발생되는 기록 데이터들의 연관 규칙을 구성할 수 있는 효과적인 기법을 제안하고 있다. 기본적으로, 온라인상에서 연관 규칙을 추출하는 방법은 Carma 알고리즘을 바탕으로 하였기 때문에 최대 데이터의 scan 회수를 2회로 유지하였다. 각 사용자가 방문한 웹 사이트의 수에 대하여 정규 분포를 따르는 가중치를 Phase I 알고리즘의 지지도 관련 변수에 영향을 줌으로써, lattice 의 크기를 조절하는 요소로 사용하여 처리 시간을 단축시키고 있다. 기존의 Carma 알고리즘과 제안하는 W-Carma(Weighted-Carma) 알고리즘과 처리 시간을 비교하였으며, 대량의 데이터일 경우 좋은 성능을 보이고 있다.

  • PDF

내용기반 이미지 검색을 위한 영역별 색상차 분석 (Regional Color Feature Analysis for Content-based Image Retrieval)

  • 안재욱;문성빈
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 1999년도 제6회 학술대회 논문집
    • /
    • pp.17-20
    • /
    • 1999
  • 내용기반 이미지 검색에서는 이미지의 하위 영역을 구분하는 방식에 대하여 다양한 접근이 이루어져 왔다. 그중 한 가지가 Stricker와 Dimai가 제안한, 이미지를 다섯개의 영역으로 나누고 그 가운데 주재 객체가 위치할 것을 가정하여 높은 가중치를 부여하는 방법인데, 본 연구에서는 이와 같은 가정이 타당할 것인가를 S.K. Chang의 PIM(Picture Information Measure) 엔트로피를 계산하여 검증하려 하였다. 실험결과 이미지의 중앙과 그 외부 영역 사이에는 유의미한 차이가 존재하는 것으로 나타났으며, 따라서 Stricker와 Dimai의 방식을 지지할 수 있을 것으로 결론 내릴 수 있다.

  • PDF

지지벡터기계를 이용한 스팸 블로그(Splog) 판별 시스템 (A Splog Detection System Using Support Vector Systems)

  • 이성욱
    • 한국정보통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.163-168
    • /
    • 2011
  • 블로그는 인터넷 공간에서 가장 손쉽게 정보 출간, 토론 참여, 커뮤니티 형성하는 수단이다. 그러나 최근에 광고를 유치하거나 페이지 순위를 올리기 위한 목적의 다양한 스팸 블로그가 범람하고 있다. 본 연구의 목적은 웹 환경에서 이러한 스팸 블로그(Splog)를 자동으로 판별하는 시스템을 개발하는 것이다. 먼저 블로그의 HTML을 제거한 후 품사를 부착하였다. 어휘/품사 쌍을 자질로 사용하였으며 카이제곱 통계량을 이용하여 유용한 자질을 선택하였다. 선택된 자질의 가중치를 벡터로 표현한 후, 지지벡터기계(Support Vector Machines)를 학습하여 자동으로 스팸 블로그를 판별하는 시스템을 제안하였으며, SPLOG 데이터 집합으로 실험한 결과 F1척도로 90.5%의 정확률을 얻었다.

지지벡터기계를 이용한 단어 의미 분류 (Word Sense Classification Using Support Vector Machines)

  • 박준혁;이성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.563-568
    • /
    • 2016
  • 단어 의미 분별 문제는 문장에서 어떤 단어가 사전에 가지고 있는 여러 가지 의미 중 정확한 의미를 파악하는 문제이다. 우리는 이 문제를 다중 클래스 분류 문제로 간주하고 지지벡터기계를 이용하여 분류한다. 세종 의미 부착 말뭉치에서 추출한 의미 중의성 단어의 문맥 단어를 두 가지 벡터 공간에 표현한다. 첫 번째는 문맥 단어들로 이뤄진 벡터 공간이고 이진 가중치를 사용한다. 두 번째는 문맥 단어의 윈도우 크기에 따라 문맥 단어를 단어 임베딩 모델로 사상한 벡터 공간이다. 실험결과, 문맥 단어 벡터를 사용하였을 때 약 87.0%, 단어 임베딩을 사용하였을 때 약 86.0%의 정확도를 얻었다.

효율적인 연관규칙 감축을 위한 WT-알고리즘에 관한 연구 (A Study on WT-Algorithm for Effective Reduction of Association Rules)

  • 박진희;피수영
    • 한국산업정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.61-69
    • /
    • 2015
  • 매일 각종 모바일 디바이스와 온라인, 소셜네트워크서비스 등에서 쏟아지는 데이터로 인해 정보의 홍수를 넘어 과부하 상태에 있다. 이미 생성되어 있는 기존 정보들도 있지만 시시각각 새롭게 생겨나고 있는 정보들이 헤아릴 수 없을 정도이다. 연관분석은 이러한 정보들 속에서 나타나는 항목의 발생 빈도수가 최소 지지도보다 큰 빈발항목집합(Frequent Item set)을 찾는 방법이다. 항목의 수가 많아짐에 따라 규칙의 수도 기하급수적으로 늘어나므로 원하는 정보를 찾기가 어려운 단점이 있다. 따라서 본 논문에서는 트랜잭션데이터 집합을 Boolean 변수 아이템으로 나타내었다. 논리함수를 간소화하는데 사용되는 Quine-McKluskey의 방법으로 알고리즘화하여 각 항목에 가중치를 부여한 WT-알고리즘을 제안한다. 제안한 알고리즘은 항목의 개수와 관계없이 간략화가 가능한 장점으로 인하여 불필요한 규칙을 감소시켜 데이터마이닝 효율을 향상시킬 수 있다.

인천 송도지역 지층분포 추정을 위한 크리깅과 역거리가중치법의 적용 (Application of Kriging and Inverse Distance Weighting Method for the Estimation of Geo-Layer of Songdo Area in Incheon)

  • 김동휘;류동우;최영민;이우진
    • 한국지반공학회논문집
    • /
    • 제26권1호
    • /
    • pp.5-19
    • /
    • 2010
  • 매립지반의 지층분포는 터파기 공사 시 지층파악, 말뚝 지지층 심도 예측, 잔류 침하량 예측 등에 직접적으로 사용되는 중요한 정보이다. 이러한 지층분포는 기존의 지반조사자료를 이용하여 지구통계학적 방법인 크리깅과 이격거리에 따라 가중치를 부여하는 역거리가중치법 등을 사용하여 추정할 수 있다. 본 논문에서는 크리깅과 역거리가중치법의 추정결과의 신뢰성을 교차검증한 후 각각의 방법에서 사용되는 적정한 베리오그램 모델과 $\alpha$ 값을 제시하였다. 크리깅에서는 실험적 베리오그램에 가장 적합한 이론적 베리오그램 모델이 반드시 가장 신뢰성 높은 추정결과를 주지 않는다는 것을 알 수 있었다. 역거리가중치법에서는 지층의 형성과정에 따라 적정 $\alpha$ 값이 다르며, 풍화토가 매립층과 퇴적층보다 큰 $\alpha$ 값을 사용할 경우 신뢰성 높은 결과를 얻을 수 있었다. 크리깅의 추정결과가 역거리가중치법에 비하여 신뢰성이 높은 것으로 나타났으며, 크리깅은 베리오그램을 이용하여 지층분포의 구조를 파악할 수 있었다.

온라인게임 채팅에서의 비속어 차단시스템 (A Swearword Filter System for Online Game Chatting)

  • 이성욱
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1531-1536
    • /
    • 2011
  • 온라인 게임의 활성화로 온라인 게임의 폐해도 증가하고 있는데 온라인 게임의 대표적인 폐해 중 하나인 언어 폭력 문제가 심각한 사회문제를 야기하고 있다. 본 논문은 온라인 게임의 채팅에 나타나는 비속어를 자동으로 차단하는 시스템을 제안한다. 우리는 온라인 게임의 채팅창에 나타나는 문장을 수집하였고 비속어 포함 문장과 정상 문장으로 수동으로 분류하였다. 음절 n-gram과 어휘-품사 쌍을 자질로 사용하며 카이제곱 통계량을 이용하여 자질을 선택한다. 선택된 자질들을 이진가중치로 표현하여 지지벡터기계(SVM)를 학습한 후, SVM 분류기로 각 문장의 차단 여부를 결정하였다. 실험 결과, 수집된 데이터에 대해 약 90.4%의 F1 정확률을 얻었다.

외국학술지지원센터(FRIC) 평가지표 개발에 관한 연구 (A Study on the Development of Evaluation Measures and Indicators for Foreign Research Information Centers)

  • 오동근;여지숙;최성열
    • 한국도서관정보학회지
    • /
    • 제43권2호
    • /
    • pp.99-116
    • /
    • 2012
  • 이 연구는 국가적 차원에서 외국학술지의 효율적 이용을 위해 설립된 외국학술지지원센터들의 운영전반과 성과를 평가하기 위한 평가지표를 개발하기 위해 시도된 것이다. 이를 위해 이 연구에서는 평가지표를 운영전략과 운영시스템, 운영성과의 세 부문으로 나누고, 이를 다시 8개 세부부문, 16개 지표, 35개 세부지표로 구분하여 제시하였다. 각각의 지표는 AHP 전문가설문조사 결과 도출된 가중치로 배점을 결정하였으며, 최종점수는 운영전략부문 190점, 운영시스템부문 440점, 운영성과부문 370점, 총 1,000점 만점으로 구성하였다. 개발된 평가지표를 바탕으로 평가지표정의서를 개발하였으며, 이 정의서를 기반으로 시범평가와 자체평가를 실시하여, 차후의 실제평가에서 나타날 수 있는 문제점들을 검토하도록 하였다.