• Title/Summary/Keyword: 가압(pressurization)

Search Result 164, Processing Time 0.023 seconds

Hydraulic Test for Strength Evaluation of Valve (수압시험을 이용한 밸브의 강도평가)

  • Yi, Sodam;Ko, Junbok;Park, Yongsoo;Kim, Seongsu;Baek, Kibong;Suh, Suhkhoon;Ha, Dongsung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.395-400
    • /
    • 2017
  • Hydraulic test was conducted to evaluate the structural strength of valve exposed to high pressure environment during combustion progress. For the proof pressure, 1.05 times higher pressure than MEOP was applied in the hydraulic test. Two units of valves were used in the hydraulic test. The result for measured strain of the valve dependent on the pressurization conditions during the test were verified comparing with the results for the finite element analysis. Observing the difference between the results for the finite element analysis and the hydraulic test, the difference was within 20% error and the plastic deformation was not generated.

  • PDF

A Study on the Airtightness Performance of New Han-ok Bedrooms (신한옥 침실 공간의 기밀성능 평가 연구)

  • Lee, Ju-Yeob;Jang, Hyeon-Chung;Lee, Tai-Gang;Song, Min-Jeong;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.79-89
    • /
    • 2013
  • The purpose of this study is to evaluate the airtightness performance of New Han-ok and to supply fundamental data for standards establishment. Air leakage testings were accomplished by means of blower door test in 26 bedrooms of 16 Han-oks located in Jeonnam happy villages. Followings are results. 1) Air change per hour at 50 Pa(ACH50) is located on 8.42~78.38. 2) No correlation between ACH50 and volumes, floor area, above grade surface area. 3) The more wood structural elements are exposed, attached spaces, wooden sliding and casement windows, the less airtightness performance. 4) An Airtightness with ACH50/20(NL, Normalized leakage) is located on 0.42~3.92 and building leakage class following F(4%), G(11%, sufficiently leaky, No need mechanical ventilation), H(4%, Need of cost-effective tightening), I(31%), J(50%) by a single-story house the normalized leakage of ASHRAE.

Bending Strain Dependence of the Critical Current in Externally-reinforced Bi-2223 Tapes with Different Hermeticity under pressurized Liquid Nitrogen (외부보강된 밀봉 상태가 다른 Bi-2223테이프의 가압 LN2하에서 임계전류의 굽힘변형률 의존성)

  • Shin, Hyung-Seop;Dizon, John Ryan C;Park, Jeong-Soo;Rolley, Bonifacio
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.541-545
    • /
    • 2007
  • The critical current degradation behaviors of multifilamentary Bi-2223 superconducting tapes under pressurized liquid nitrogen were investigated using a r-shaped sample holder which gives a series of bending strains to tape. Three kinds of externally-reinforced Bi-2223 tapes with different hermeticity were used as samples. The tape with the thicker reinforcement layer had a better bending strain tolerance of $I_c$, but when the bending strain was calculated at the outermost filament, the $I_c$ degradation behavior became identical. For all samples, $I_{c0}$ decreased with the increase of applied pressure, but the $I_c$ degradation behavior with bending strain at each pressure level was similar. Furthermore, after depressurization from 1 MPa to atmospheric pressure, $I_c$ was completely recovered to its initial values. When the samples were warmed up to room temperature after pressurization tests, the ballooning damage occurred at lower bending strain regions. The region where ballooning was observed was identical to the one where the significant $I_c$ degradation occurred.

Development of PSA Process for Medical Oxygen Generator (의료용 산소발생기 제작을 위한 PSA 공정의 개발)

  • Choi, Jae-Wook;Na, Byung-Ki
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.75-80
    • /
    • 2009
  • In order to separate oxygen from air, the effects of feed gas flow rate and rinse gas flow rate on the product purity and flow were examined using 2 bed PSA with 4 step cycle. The addition of product pressurization step increased the product purity and flow rate. The addition of pressure equalization increased the product flow rate. The test product was manufactured and the purity and flow rate of product oxygen was examined. The results were compared with the commercial medical oxygen generator of 5 ${\ell}/min$ and 90% oxygen purity.

A Study on the Iodine-induced Stress Corrosion Cracking of Zircaloy-4 Cladding (I) (지르칼로이-4 피복재의 요드응력 부식 균열에 대한 연구)

  • Ryu, W.S.;Hong, S.I.;Choi, Y.;Kang, Y.H.;Rim, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.193-199
    • /
    • 1985
  • Iodine-induced stress corrosion cracking tests of Zircaloy-4 cladding were undertaken using the modified infernal pressurization method. The effects of iodine concentration and applied stress were studied. The critical iodine concentration for SCC was found to be about 0.2 mg/$\textrm{cm}^2$ at 603$^{\circ}$K. The threshold stress was dependent on the test temperature and the mechanical properties of the specimen. The fracture surface showed that the crack propagated stepwise iron one grain to others until the material was unstable and then ruptured mechanically. The initial region showed the transgranular feature and the wedge-shaped cracks. As the crack proceeded, the transgranular and ductile-tearing mired feature appeared in the middle region.

  • PDF

A Study on the Application of AI-Based Composite Sensor in WTP (수도사업장에서의 AI 기반 복합센서 적용 방안 연구)

  • Hong, Sung-taek;An, Sang-byung;Kim, Kuk-il;Cho, Hyun-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.41-42
    • /
    • 2021
  • The Green New Deal policy was established to innovate the government's energy consumption structure, establish a third basic energy plan to strengthen the global competitiveness of the energy industry, and realize a carbon neutral society due to the increased need for transition to a low-carbon economy. Waterworks such as drinking water, water purification plant, and pressurization plant analyze control factors and energy consumption status by process to improve energy management efficiency and reduce energy usage through the 4th industrial revolution. Ultimately, we want to realize net-zero water purification plant.

  • PDF

Design of Hazardous Fume Exhaust System in Vacuum Pressure Impregnation Process Using CFD (CFD를 이용한 진공가압함침공정 내 유해가스 배출시스템 설계)

  • Jang, Jungyu;Yoo, Yup;Park, Hyundo;Moon, Il;Lim, Baekgyu;Kim, Junghwan;Cho, Hyungtae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.521-531
    • /
    • 2021
  • Vacuum Pressure Impregnation (VPI) is a process that enhances physical properties by coating some types of epoxy resins on windings of stator used in large rotators such as generators and motors. During vacuum and pressurization of the VPI process, resin gas is generated by vaporization of epoxy resin. When the tank is opened for curing after finishing impregnation, resin gas is leaked out of the tank. If the leaked resin gas spreads throughout the workplace, there are safety and environmental problems such as fire, explosion and respiratory problems. So, exhaust system for resin gas is required during the process. In this study, a case study of exhaust efficiency by location of vent was conducted using Computational Fluid Dynamics (CFD) in order to design a system for exhausting resin gas generated by the VPI process. The optimal exhaust system of this study allowed more than 90% of resin gas to be exhausted within 1,800 seconds and reduced the fraction of resin gas below the Low Explosive Limit (LEL).

The Study on the Effect of Elevator Movement on the Pressure Difference between Vestibule and Living room in High-rise Buildings (초고층 건축물에서 엘리베이터 구동이 부속실과 화재실 간 차압형성에 미치는 영향연구)

  • Park, Younggi;Hong, Kibea;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Recently, there have been a lot of casualties due to fires in high-rise buildings. The toxic gases and smokes generated by fires in high-rise buildings spread rapidly through the elevator shaft and stairwell, due to the stack effect, and can cause critical casualties. To reduce the number of casualties, smoke control systems have been introduced. Smoke control systems play an essential role in preventing the spread of smoke in high-rise buildings and securing the evacuation route. Also, in high-rise buildings, evacuation by an elevator is considered to be indispensable. However, the pressure field in the shaft is strongly disturbed when the elevator is moving and this can affect the performance of the smoke control system. Therefore, in this study, we experimentally and numerically analyzed the effect of elevator movement on the pressure difference between the vestibule and living room by building a model using the sandwich pressurization method based on the performance based design. To consider the leakage areas in high-rise buildings, e.g. the windows, fire door and elevator, the National Fire Safety Codes and area ratio were used. The elevator speed in the model building was varied between 20 m/s and 100 m/s corresponding to a real elevator speed of 7 m/s~17 m/s. As a result, the relationship between the pressure difference and elevator speed was found to be ${\Delta}P=40{\cdot}{\exp}$(-Ves /-104.7)-23.735. This result can be used to take into consideration the effect of elevator movement when designing smoke control systems.

Improvement of Impact Resistance of B4C Tile Inserted B4Cp/Al7075 Hybrid Composites Through Interface Control (B4C tile 삽입 B4Cp/Al7075 하이브리드 복합재의 계면 제어를 통한 내충격 특성의 향상)

  • Park, Jongbok;Lee, Taegyu;Lee, Donghyun;Cho, Seungchan;Lee, Sang-Kwan;Hong, Soon Hyung;Ryu, Ho Jin
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.235-240
    • /
    • 2020
  • In this study, in order to improve the impact resistance of the B4C tile-inserted B4Cp/Al7075 hybrid composite, a control method of the B4C/Al7075 interface was developed and the characteristics of the controlled interface were analyzed. B2O3, Ni, and Si were coated on the B4C tile surface using additional thermal oxidation, electroless plating, and plasma spraying. The coated B4C tile is inserted into the B4Cp/Al7075 composite material using the liquid pressurization method. Interfacial energy, bonding strength, and impact resistance were measured to analyze the effect of the coating. All coatings enhanced interfacial energy, bonding strength, and impact resistance, and in particular, it was confirmed that the impact resistance increased by 86.8% when B2O3 coating was used. This study is significant in developing and analyzing a core surface treatment method that improves the performance of B4C/Al series composites, which are attracting attention as next-generation lightweight amour and bulletproof materials.

Identification of Frequency-Dependent Dynamic Characteristics of a Bump Structure for Gas-Foil Bearings via 1-DOF Shaker Tests Under Air Pressurization (가스 포일 베어링 범프 구조의 1 자유도 가진/가압 실험을 통한 주파수 의존 동특성 규명)

  • Sim, Kyuho;Park, Jisu;Lee, Sanghun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1029-1037
    • /
    • 2015
  • Recently, the importance of rotordynamic stability has been increased because of the tendency to employ ultra-high speeds in rotating machinery. In particular, the dynamic characteristics of gas bearings for high-speed rotating machinery need to be identified at various excitation frequencies to predict the rotor's behavior. In this study, we perform dynamic loading tests for gas-foil bearings (GFBs) to determine the bump foil structure and an air-film combined bump-foil structure for varying excitation frequencies. We calculate the dynamic characteristics from the measured force and displacement data. The air film is generated by a pressurized air supply. Based on the results, the stiffness coefficients of the bump structure and the air-film combined bump structure increased, while the damping coefficients decreased at increasing excitation frequencies. Further, the stiffness and damping coefficients of the air-film combined structure show lower values than those of the bump structure. Consequently, we identify the frequency-dependent dynamic characteristics of the bump structure and the effect of gas film on the dynamic characteristics of GFBs. Furthermore, to reveal the effectiveness of the proposed method, we perform experiments and discuss two methods of extracting the dynamic characteristics from the measured data.