• Title/Summary/Keyword: 가스-액체

Search Result 592, Processing Time 0.024 seconds

Analysis of Trace Impurities in The Bulk Gases by a Cold Concentration Method (저온 농축법에 의한 극미량 성분 가스분석)

  • Lee Taeck-Hong;Hong So Young;Jung Woo Chan;Kim Young Rak;Suh Jung Woo;Han Ju Tack;Park Doo Seon;Son Moo Ryong
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.260-265
    • /
    • 1997
  • Analysis of trace impurities in the bulk .gas has been very important with the development of semi-conductor related industry. In the paper, we reported the analysis of the trace impurites of carbon monoxide and methane in the bulk helium and hydrogen by the GC-TCD with a cold nitrogen trap. We compared these results by the paraallel analysis. All data showed a good correspondence, showing reliable statistical error ranges.

  • PDF

Perspective of Technology for Liquid Rocket Engines (액체로켓엔진 기술 전망)

  • Cho, Won Kook;Ha, Sung Up;Moon, Insang;Jung, Eun Whan;Kim, Jin Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.675-685
    • /
    • 2016
  • A research area on liquid rocket engine has been suggested. Downsizing through combustion pressure rise and low price are major issues to gas generator cycle engines. A very high pressure turbopump and material against oxidizer rich environment may be necessary technologies for staged combustion cycle engines. Integrated analysis saving computing time is the trend of rocket engine systems analysis area. Other important research topics are the methane engine for reusable booster to reduce the cost, 3D printing and materials for high temperature or oxidizer rich environment.

Influence of Reaction Temperature on the Pyrolytic Product of Rice Straw by Fast Pyrolysis using a Fluidized Bed (볏짚의 급속 열분해 생성물에 대한 반응온도의 영향)

  • Kang, Bo-Sung;Park, Young-Kwon;Kim, Joo-Sik
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.47-58
    • /
    • 2005
  • Rice straw is one of the main renewable energy sources in Korea, and bio-oil is produced from rice straw with a lab. scale plant equipped mainly with a fluidized bed and a char removal system. We investigated how the reaction temperature affected the production of bio-oil and the efficiency of a char removal system. To elucidate how the temperature depended on the production of bio-oil, experiment were conducted between $450^{\circ}C\;and\;600^{\circ}C$ with a feed rate of about 300g/h. The mass balance was established in each experiment, and the produced gas and oil were analyzed with the aid of GCs and a GC-MS system. The char removal system is composed of a cyclone and a hot filter. In the experiments, we observed that the optimum reaction temperature range for the production of bio-oil is between $450^{\circ}C\;and\;500^{\circ}C$.

  • PDF

Thrust and Mixtrue Control of Liquid Propellant Rocket Engine using Q-ILC (Q-ILC를 이용한 액체추진제로켓엔진의 추력 및 혼합비 제어)

  • Jung, Young-Suk;Lim, Seok-Hee;Cho, Kie-Joo;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.139-145
    • /
    • 2006
  • LRE(Liquid propellant Rocket Engine) is one of the important parts to control the trajectory and dynamics of rocket. The purpose of control of LRE is to control the thrust according to requiredthrust profile and control the mixture ratio of propellants fed into gas generator and combustor for constant mixture ratio. It is not easy to control thrust and mixture ratio of propellants since there are co-interferences among the components of LRE. In this study, the dynamic model of LRE was constructed and the dynamic characteristics were analyzed with control system as PID control and PID+Q-ILC(Iterative Learning Control with Quadratic Criterion) control. From the analysis, it could be observed that PID+Q-ILC control logic is more useful than standard PID control system for control of LRE.

  • PDF

Measurement of Radiative Heat Flux of Nozzle Exit (노즐 후방부의 Radiative Heat Flux 측정)

  • An, Won Geun;Park, Hui Ho;Hwang, Su Gwon;Kim, Yu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.87-92
    • /
    • 2003
  • In rocket systems, somtimes special devices or equipments are installed near the nozzle exit area where high temperature and pressure combustion gas flows. To pretect these subsystems from severe thermal environment, it is necessary to have accurate thermal data measured from the experimental liquid rocket firing test. Test variables were combustion pressure (200, 300, 400 psi) and mixture ratio (1.5, 2.0, 2.5) and quartz was used as a heat probe. Measurement technique used in this research can be also applied to measure the radiative heat flux inside the combustion chamber which is important imput data for the liquid rocket regenerative cooling system design.

An Experimental Study of a Diffuser Starting Characteristics for Simulating High-Altitude Environment by using a Liquid Rocket (액체로켓엔진 연소기를 이용한 고고도 환경 모사용 디퓨저 시동특성 연구)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1195-1201
    • /
    • 2010
  • Performance tests of a supersonic exhaust diffuser were conducted by using a liquid rocket engine for simulating high-altitude environment. The experimental setup consisted of a combustion chamber, a vacuum chamber and a diffuser. The combustion tests for simulating high-altitude environment were carried out at three cases by chamber pressure variation(26, 29, 32barg). The test results showed that the diffuser was started at all case and vacuum chamber pressures were approximately 140torr. The starting pressure using combustion gas was similar with that of cold gas, but the vacuum chamber pressure was relatively high because of high temperature in the vacuum chamber. The results of this test can be used as an essential database for the design of real-scale high-altitude simulation test facility in the future.

Design Point Operating Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 설계점 운영 특성)

  • Moon, Ilyoon;Moon, Insang;Kang, Sang Hun;Ha, Seong-Up;Lee, Soo Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.81-88
    • /
    • 2013
  • It was designed and tested at the design point that an oxidizer rich preburner for a staged combustion liquid rocket engine propelled by kerosene and LOx. The oxidizer rich preburner was designed as some of LOx injected from the mixing head was burned with kerosene and the rest of LOx injected from injection holes in the regenerative cooling chamber was vaporized by combustion gas. The preburner is operated at OF ratio of 60 and combustion pressure of 20 MPa. The Preburner has a honey-comb type mixing head with simplex swirl injectors, a turbulence ring improving combustion stability and uniformity of product gas temperature distribution, and a nozzle simulating the duct. With the combustion test results at the design point, the oxidizer rich preburner showed high combustion stability and uniformity of product gas temperature distribution.

Development of Static Seal for a Liquid Rocket Engine (액체 로켓 엔진 스태틱 실 개발)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Chung, Taegeum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • Static seals are used to seal high temperature gas and cryogenic fluid under high pressure, at interfaces between liquid rocket engine components such as combustion chamber, turbopump, gas generator, valves, etc. As thermal expansion and contraction at assembly interfaces cause undesirable leakage under cryogenic and high temperature environments, static seals applied for sealing of joint interfaces without relative motion should be designed properly. The additional function of rotation at the sealing face is also required for static seals, when the spherical flange is used for improvement of assembly at misalignment interfaces. In this study, structural analysis and leak tightness test of simulating test rig for several important interfaces are performed, to verify structural integrity of static seals.

Fuel-Rich Combustion Characteristic of a Combined Gas Generator (혼합식 가스발생기의 연료과농 연소특성)

  • Lee, Dongeun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.593-600
    • /
    • 2015
  • In this study, a combined hybrid rocket system is newly introduced which has characteristics of both gas generators and afterburner type hybrid rockets. In particular, a combined gas generator utilizing solid fuel and liquid/gas oxidizer was designed as a primary combustor of the system. Combustion tests were carried out with various equivalence ratio affected by parameters such as fuel length, oxidizer flow rate, fuel port diameter and fuel type. In general, fuel-rich gas generator produces low combustion gas temperature to meet the temperature requirement and the target temperature was transiently set less than 1600 K. Since it was found that controlling parameters showed limited effects on the change of equivalence ratio, mixture of $O_2$ and $N_2$ as an oxidizer was additionally introduced. As a result, a combined gas generator successfully produced combustion gas temperature of less than 1600 K Future studies will carry out more combustion tests to attain fuel-rich combustion gas temperature less than 1200 K, which was a temperature requirement of a gas generator system in the previous studies.

A Study on Performance of Pressure Relief Devices of CNG Cylinder Valves (CNG 용기용밸브의 압력방출장치 성능에 관한 연구)

  • Kim, Young-Seob;Kim, Lae-Hyun;Lee, Jae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.33-39
    • /
    • 2009
  • This study is intended to experiment performance of pressure relief device and to extend the effective ways to prevent cylinders of NGV from bursting when they are exposed to local fire intensively or when they are overcharged under ambient temperature at fueling stations in summer. In the results of thermal cycling experiments, all products of three companies met the requirements for gas leakage in the qualification criteria between $82^{\circ}C$ and $-40^{\circ}C$. But the o-rings of two companies' specimens among the three companies' specimens got damaged under the accelerated conditions between $135^{\circ}C$ and $-45^{\circ}C$. It took one minute and thirty nine seconds for a glass bulb type of a thermal sensitive type PRD to activate and it took two minutes and thirty one seconds for a fusible plug type of a thermal sensitive type PRD to activate. These results indicated that a glass bulb type of a thermal sensitive type PRD was one minute faster than a fusible plug type of a thermal sensitive type PRD. Under the accelerated condition $135^{\circ}C$, the activation pressure of a pressure sensitive type PRD burst at 32.1 MPa and, under the condition of qualification criteria, it burst from 30.7 MPa to 32.1 MPa.. As a result of the experiment for performance of pressure relief device, in the case of the thermal sensitive type PRD, a glass bulb type is more effective to flame than a fusible plug type. we confirmed that the rupture pressure of a pressure sensitive type PRD could not be affected by temperature and pressure cycling.

  • PDF