• Title/Summary/Keyword: 가스-액체

Search Result 596, Processing Time 0.026 seconds

Performance Analysis of the Experimental Liquid Rocket Engine using Liquefied Natural Gas as a Fuel (액화천연가스를 연료로 하는 시험용 액체로켓엔진의 성능해석)

  • 한풍규;이성웅;김경호;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.198-204
    • /
    • 2004
  • Using liquefied natural gas as a fuel, water, natural gas and liquefied natural gas-cooled firing tests were conducted. With the viewpoint of characteristic velocity, and specific impulse, the effect of OF mixture ratio and fuel inlet temperature into a combustion chamber were analyzed. OF mixture ratio and fuel inlet temperature into a combustion chamber have great influence on the performance. Characteristic velocity and theoretical specific impulse attain the maximum value at 0.72~0.75 and 0.75 of OF mixture ratio, respectively. Engine performance has a tendency to increase, proportional to fuel inlet temperature into a combustion chamber affected by the regenerative cooling.

  • PDF

Certification Test Result of After-burner Test Facility for Gas-generator of 75 tonf Class Liquid Rocket Engine (75톤급 액체로켓엔진용 가스발생기 후연소 시험설비 인증시험 결과)

  • Kim, Chae-Hyoung;Lee, Kwang-Jin;Han, Yeoungmin;Chung, Yonggahp
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.91-97
    • /
    • 2015
  • After-burner test facility for gas generators of 75 tonf class liquid rocket engines was designed, which was verified by the facility certification test of the Combustion Chamber Test Facility(CCTF). The purpose of the certification test of the after-burner test facility is to verify the combustion stability of gas torches equipped in the gas generator and the after-burner test facility by using methane and oxygen gases. In the case of the autonomous test, the supply system provided steadily methane and oxygen gases to the after-burner system without pressure drop. The combustion pressure of the gas torch approached the design requirement. In the case of the coupled test, the gas generator ignition and the fuel-rich exhaust gas combustion were successfully carried out, leading to the verification of the test facility.

Study on Cool-down Analysis Technology for Large Scale Liquid Hydrogen Receiving Terminal (대용량 액체수소 인수기지 쿨다운 해석 기술 연구)

  • CHANG-WON PARK;DONG-HYUK KIM;YEONG-BEOM LEE;HEUNG-SEOK SEO;YOUNG-SOO KWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • Korea government is trying to supply liquid hydrogen from another country to domestic The research for liquid hydrogen transportation and liquefaction plant of hydrogen underway for several years, and empirical research is also planned in the future. Along with the development of liquid hydrogen transport ship/liquefaction plant technology, the development of liquid hydrogen reception base technology must be carried out. In this study, a concept level liquid hydrogen receiving terminal is constructed based on the process of the LNG receiving terminal. Based on this, a study is conducted on the development of analysis technology for the amount of BOG (pipe, tank) generated during cooldown and unloading in the liquid hydrogen unloading line (loading arm to storage tank). The research results are intended to be used as basic data for the design and liquid hydrogen receiving terminal in the future.

Structural Change of Supersonic Jet Due to Liquid Injection in Supersonic Backward Facing Step Flow (초음속 후향 계단 유동에서 액체 분사로 인한 초음속 제트의 구조 변화)

  • Ahn, Sang-Hoon;Han, Doo-Hee;Choi, Han-Young;Seo, Seong-Hyeon;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.9-16
    • /
    • 2019
  • The experiment on the liquid jet in crossflow in supersonic BFS (backward-facing step) flow was conducted to investigate the mixing characteristics. The working fluids are nitrogen and water. The shadow graph technique was used to visualize the flow field. Images captured by the high-speed camera were applied to analyze the flow phenomena. The liquid jet was injected at the re-circulation zone created by the supersonic jet flow. Experimental conditions are defined based on the pressure of the nitrogen gas chamber and pressurized liquid tank. In respective cases, the penetration depth of liquid jet and location of the Mach disc were observed to be proportional to the momentum ratio of gas and liquid jets.

충돌형 가스발생기 탈설계점 연소시험

  • Kim, Seung-Han;Han, Yeung-Min;Seo, Seong-Hyeon;Moon, Il-Yoon;Lee, Kwang-Jin;Kim, Jong-Kyu;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-90
    • /
    • 2004
  • This paper describes the results of combustion performance test of fuel-rich gas generator(GG) using LOx and kerosene as propellant at off-design conditions. The chamber pressure is thought to be a function of O/F ratio and total propellant mass flow rate. The test shows that the spatial temperature deviation at the exit of gas generator remains within 7.5K and that the average gas temperature at the exit is a function of propellant O/F ratio. The results of firing test of gas generator at off-design conditions, especially the relation between gas temperature and O/F ratio, can provide useful data for the design of future gas generator and for the development of low-O/F ratio reaction analysis code.

  • PDF

분산형 마이크로터빈 열병합발전 시스템 개발

  • 박병식
    • The Magazine for Energy Service Companies
    • /
    • s.31
    • /
    • pp.38-43
    • /
    • 2004
  • 가스터빈을 이용하는 발전시스템 중에서 발전용량이 300kW 이하인 시스템을 마이크로터빈 발전 시스템이라 하며, 가스터빈에서 배출되는 폐열을 활용하여 열효율을 극대화시킨 것이 열병합발전 시스템이다. 마이크로터빈 열병합발전 시스템은 소형이면서 발전 및 열효율이 높고, 환경친화적인 제품 특성을 갖고 있으며, 또한 기존에 주로 사용되고 있는 천연가스 및 액체연료 뿐만 아니라 유정이나 쓰레기 매립장 등에서 버려지는 낮은 품질의 가스도 연료로 사용할 수 있도록 하여 에너지 활용도를 높일 수 있다. 본문에서는 국내에서 개발중인 65kW급 마이크로터빈 열병합발전 시스템을 소개하고 현재까지의 개발현황을 정리하였다.

  • PDF

Review of Combustion Instability in Liquid Propellant Rocket Engines (액체로켓엔진의 연소불안정 현상)

  • Khil, Tae-Ock;Im, Ji-Hyuk;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.71-84
    • /
    • 2007
  • The review of the liquid propellant rocket engine is presented. The combustion instabilities which were discovered on solid and liquid propellant rocket engines in 1930, have occurred on propulsion devices, such as gas turbine, ramjet, scramjet and rocket, and thus a study on the combustion instability became necessary. However, this problem has not been solved yet. Therefore, we investigated causes and mechanisms of the combustion instability and surveyed the efforts of solving combustion instability in various countries for developing stable liquid propellant rocket engines.

Determination of The Cryogenic Propellant Parameters at Pressurization of The Propulsion System Tank by Bubbling (버블링을 이용한 추진기관 가압 시스템에서 극저온 추진제 변수의 결정)

  • Bershadskiy Vitaly A.;Jung, Young-Suk;Lim, Seok-Hee;Cho, Gyu-Sik;Cho, Kie-Joo;Kang, Sun-Il;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a calculation method of the thermodynamic parameters of cryogenic propellant is proposed when a cryogenic propellant tank is pressurized by gaseous helium(GHe) bubbling. Temperature of cryogenic propellant and mass of dissolved GHe into propellant were analyzed at the various operation of pressurization of tile liquid oxygen(LOX) and hydrogen($LH_2$) tank using helium bubbling. It was evaluated how the GHe bubbling influences to the thermodynamic parameters of LOX and $LH_2$ with results of the analysis. With the proposed calculation method, It will be able to confirm the feasibility of GHe bubbling as a pressurization system of cryogenic propellant tank and to optimize the pressurization system using GHe bubbling.

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출 시 온도강하율에 대한 연구 (II))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.58-64
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank, which is placed inside of cryogenic propellant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Previous investigation dealt with thermal correlation of pressurant and external fluid at room temperature. This study investigates the temperature variation of cryogenic pressurant (GHe) at the time when the pressurant is coming out of pressurant tank, which is submerged in a liquid oxygen, experimentally as well as numerically.

  • PDF

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (I) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구 (I))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Generally for the propulsion system, which requires high thrust and is consisted of cryogenic propellant the pressurant is stored at high density and high pressure to reduce the weight of pressurant tanks, which are placed inside of cryogenic propellant tank. That is called cryogenic storage pressurization system. This study investigates the temperature variation of pressurant at the time when the pressurant is coming out of pressurant tank experimentally as well as numerically. Fluids used in this study are air and liquid oxygen as outer fluid and gaseous nitrogen and gaseous helium as pressurant respectively.