• Title/Summary/Keyword: 가스 방출시간

Search Result 111, Processing Time 0.037 seconds

Production of $[^{18}F]F_2$ Gas for Electrophilic Substitution Reaction (친전자성 치환반응을 위한 $[^{18}F]F_2$ Gas의 생산 연구)

  • Moon, Byung-Seok;Kim, Jae-Hong;Lee, Kyo-Chul;An, Gwang-Il;Cheon, Gi-Jeong;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.228-232
    • /
    • 2006
  • Purpose: electrophilic $^{18}F(T_{1/2}=110\;min)$ radionuclide in the form of $[^{18}F]F_2$ gas is of great significance for labeling radiopharmaceuticals for positron omission tomography (PET). However, its production In high yield and with high specific radioactivity is still a challenge to overcome several problems on targetry. The aim of the present study was to develop a method suitable for the routine production of $[^{18}F]F_2$ for the electrophilic substitution reaction. Materials and Methods: The target was designed water-cooled aluminum target chamber system with a conical bore shape. Production of the elemental fluorine was carried out via the $^{18}O(p,n)^{18}F$ reaction using a two-step irradiation protocol. In the first irradiation, the target filled with highly enriched $^{18}O_2$ was irradiated with protons for $^{18}F$ production, which were adsorbed on the inner surface of target body. In the second irradiation, the mixed gas ($1%[^{19}F]F_2/Ar$) was leaded into the target chamber, fellowing a short irradiation of proton for isotopic exchange between the carrier-fluorine and the radiofluorine absorbed in the target chamber. Optimization of production was performed as the function of irradiation time, the beam current and $^{18}O_2$ loading pressure. Results: Production runs was performed under the following optimum conditions: The 1st irradiation for the nuclear reaction (15.0 bar of 97% enriched $^{18}O_2$, 13.2 MeV protons, 30 ${\mu}A$, 60-90 min irradiation), the recovery of enriched oxygen via cryogenic pumping; The 2nd irradiation for the recovery of absorbed radiofluorine (12.0 bar of 1% $[^{19}F]fluorine/argon$ gas, 13.2 MeV protons, 30 ${\mu}A$, 20-30 min irradiation) the recovery of $[^{18}F]fluorine$ for synthesis. The yield of $[^{18}F]fluorine$ at EOB (end of bombardment) was achieved around $34{\pm}6.0$ GBq (n>10). Conclusion: The production of $^{18}F$ electrophilic agent via $^{18}O(p,n)^{18}F$ reaction was much under investigation. Especially, an aluminum gas target was very advantageous for routine production of $[^{18}F]fluorine$. These results suggest the possibility to use $[^{18}F]F_2$ gas as a electrophilic substitution agent.

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

Growth of Tin Dioxide Nanostructures on Chemically Synthesized Graphene Nanosheets (화학적으로 합성된 그래핀 나노시트 위에서의 이산화주석 나노구조물의 성장)

  • Kim, Jong-IL;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.81-86
    • /
    • 2019
  • Metal oxide/graphene composites have been known as promising functional materials for advanced applications such as high sensitivity gas sensor, and high capacitive secondary battery. In this study, tin dioxide ($SnO_2$) nanostructures were grown on chemically synthesized graphene nanosheets using a two-zone horizontal furnace system. The large area graphene nanosheets were synthesized on Cu foil by thermal chemical vapor deposition system with the methane and hydrogen gas. Chemically synthesized graphene nanosheets were transferred on cleaned $SiO_2$(300 nm)/Si substrate using the PMMA. The $SnO_2$ nanostuctures were grown on graphene nanosheets at $424^{\circ}C$ under 3.1 Torr for 3 hours. Raman spectroscopy was used to estimate the quality of as-synthesized graphene nanosheets and to confirm the phase of as-grown $SnO_2$ nanostructures. The surface morphology of as-grown $SnO_2$ nanostructures on graphene nanosheets was characterized by field-emission scanning electron microscopy (FE-SEM). As the results, the synthesized graphene nanosheets are bi-layers graphene nanosheets, and as-grown tin oxide nanostructures exhibit tin dioxide phase. The morphology of $SnO_2$ nanostructures on graphene nanosheets exhibits complex nanostructures, whereas the surface morphology of $SnO_2$ nanostructures on $SiO_2$(300 nm)/Si substrate exhibits simply nano-dots. The complex nanostructures of $SnO_2$ on graphene nanosheets are attributed to functional groups on graphene surface.

Differences in Thrombolytic Effects in Accordance with Dosing-regimens of Tissue-type Plasminogen Activator in Experimental Pulmonary Embolism (실험적 폐색전증에서 조직형플라스미노겐활성체의 투여방법에 따른 혈전용해효과의 차이)

  • Chung, Hee-Soon;Kim, Ho-Jung;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.123-134
    • /
    • 1993
  • Background: Tissue-type plasminogen activator is a physiologic activator, which has high affinity for fibrin and is activated by fibrin. Because of these properties, t-PA has the potential to induce effective thrombolysis without producing a systemic lytic state. In practice, however, therapeutically efficacious doses of t-PA has been associated with the development of a systemic lytic state. As experience with t-PA has accumulated, it has suggested that the fibrin selectivity is influenced by the dose and duration of t-PA infusion, and many studies have performed in an attempt to optimize the duration of t-PA regimen. Methods: This study was designed to assess the thrombolytic efficacy of t-PA and the differences of two dosing regimens of t-PA (infusion of 1 mg/kg t-PA over 15 or 180 minutes) in a canine model of pulmonary embolism, induced by injection of radioactive autologous blood clots. By continuously counting over both lung fields with a external gamma counter, we correlated rate and extent of pulmonary thrombolysis with corresponding pulmonary hemodynamics in addition to the gas analyses of arterial and mixed venous blood. Results: 1) While total clot lysis was similar ($36.2{\pm}3.3%$ and $39.6{\pm}2.3%$ respectively, p>0.05) when t-PA was infused over 15 or 180 minutes, the rate of lysis during infusion was markedly increased with the shorter infusion ($81.4{\pm}16.8%/hr$ vs $37.3{\pm}2.4%/hr$, p<0.05). 2) The duration of thrombolysis was $63.3{\pm}22.2$ minutes although t-PA was administered over 15 minutes, and it was only $148.5{\pm}14.0$ minutes in case of the infusion over 180 minutes (p<0.05). 3) The increased rate of thrombolysis with the shorter infusion was accompanied by a faster amelioration of cardiopulmonary impairment from pulmonary embolism (p<0.05). Conclusion: It is concluded that the shorter (15 minutes) infusion of t-PA is superior to the longer (180 minutes) infusion when the dose is equal, in consideration of the faster improvement in cardiopulmonary impairment from pulmonary embolism.

  • PDF

Comparative Study on Removal Characteristics of Disinfection By-products by Air Stripping and Flotation Processes (탈기와 부상 공정에 의한 소독부산물의 제거특성에 관한 비교 연구)

  • Cha, Hwa-Jeong;Won, Chan-Hee;Lee, Kang-Hag;Oh, Won-Kyu;Kwak, Dong-Heui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.513-520
    • /
    • 2016
  • It is well known that volatile compounds including disinfection by-products as well as emissive dissolved gas in water can be removed effectively by air stripping. The micro-bubbles of flotation unit are so tiny as microns while the diameter of fine bubbles applied to air stripping is ranged from hundreds to thousands of micrometer. Therefore, the micro-bubbles in flotation can supply very wide specific surface area to transfer volatile matters through gas-liquid boundary. In addition, long emission time also can be gained to emit the volatile compound owing to the slow rise velocity of micro-bubbles in the flotation tank. There was a significant difference of the THMs species removal efficiency between air stripping and flotation experiments in this study. Moreover, the results of comparative experiments on the removal characteristics of THMs between air stripping and flotation revealed that the mass transfer coefficient, $K_La$ showed obvious differences. To overcome the limit of low removal efficiency of dissolved volatile compounds such as THMs in flotation process, the operation range of bubble volume concentration is required to higher than the operation condition of conventional particle separation.

Energy Analysis of Constant-Pressure Compressed Air Energy Storage (CAES) Generation System (정압식 압축공기저장(CAES) 발전 시스템 에너지 분석)

  • Kim, Young-Min;Lee, Sun-Youp;Lee, Jang-Hee
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.178-184
    • /
    • 2011
  • Compressed Air Energy Storage (CAES) is a combination of energy storage and generation by storing compressed air using off-peak power for generation at times of peak demand. In general, both charging and discharging of high-pressure vessel are unsteady processes, where the pressure is varying. These varying conditions result in low efficiencies of compression and expansion. In this paper, a new constant-pressure CAES system to overcome the current problem is proposed. An energy analysis of the system based on the concept of exergy was performed to evaluate the energy density and efficiency of the system in comparison with the conventional CAES system. The new constant-pressure CAES system combined with pumped hydro storage requires the smaller cavern with only half of the storage volume for variable-pressure CAES and has a higher efficiency of system.

Dehydration effects on spectroscopic properties of $Er^{+3}$ doped phosphate laser Glass ($Er^{+3}$ 첨가된 인산염 레이저 유리의 탈 수산기 영향에 관한 분광학적 특성)

  • Cho, Kou-Sung;Park, Wan-Soo;Kim, Jong-Su;Kim, Chong-Don
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.335-335
    • /
    • 2008
  • Phosphate glass samples with various $Cr_2O_3$ and $Er_2O_3$ contents based upon $55P_2O_5\cdot24BaO\cdot10K_2O\cdot4Al_2O_3\cdot6Yb_2O_3$ were prepared. The prepared glass compositions are dehydrated using gas bubble flow method in open system and investigated the effects of the eliminating of OH groups from the glass melts with bubbling time. It was found that the probability of $Er^{+3}$ fluorescence quenching by OH groups oscillations linear depends upon the OH groups absorption coefficients in the maximum of the stretch vibrations band at $3500cm^{-1}$ while $Er^{+3}$ concentration range is between $1.6\times10^{19}$ and $21.2\times10^{19}$ ion/$cm^3$.

  • PDF

The Study of Pyrolysis Characteristics of Dioxin Precursor Chlorophenol (다이옥신 전구물질인 Chlorophenol 의 열분해에 관한 연구)

  • Jeong, Tae-Seop;Kim, Jong-Guk;Kim, Kyoung-Soo;Yoon, Byeng-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.179-185
    • /
    • 2000
  • In this study, we examined the movement of chlorophenol as a precursor of the dioxin in the after-combustion to minimize the creation and emission of dioxin in a municipal waste incinerator. The CPs was injected to the electric incinerator in temperature $300{\sim}500^{\circ}C$, using $N_2$ gas to control the reaction time, The oxygen quantity supplied into the $CP_s's$ isomer combustion was added with the value of experience formula. When the space velocity in reactor was 60~80/sec, the removal efficiency of CP was obtained in the presence of Mo-V catalyst and non catalyst. The efficiency in non-catalyst was 74% to 80% mono-CP, di-CP 55~66%, tri-CP 50~58%, while mono-CP 90~99.9%, di-CP 96~97%, tri-CP 76~99% in a catalyst. Consequently, it was shown that these were 20~30% more efficienct than those.

  • PDF

The Implementation of Remote Meter Reading System Using Bluetooth Technology & SkT3 Protocol in CDMA (블루투스와 CDMA의 SMS프로토콜을 이용한 원격 가스 검침 시스템의 구현)

  • 김종현;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.443-446
    • /
    • 2003
  • This paper implement Remote Meter Reading System which is used Bluetooth and SMS in CDMA. This System propose system which tan detect a total amount of gas, electricity or water without a meterman, at home BlueTooth is a close range wireless communication technology which uses a wireless frequency 2.4GHz and has a high trust and self error correction technology according to a low power consumption quality and a high-speed frequency hopping. This makes get a high trust concerning a data transmission than an existing modem. In addition, though wireless modem is restricted by a minimal of a wireless terminal, it will be possible to coincide with the function of the portable with the low power consumption quality by using Bluetooth. And as the system on a chip of module progresses, the possibility of the small size is present. Nowadays, SMS Protocol in CDMA for have a network function based on PPP in CDMA Phone. The proposed Remote Meter Reading System to get more nobility, efficiency, and have good function. SMS Protocol in CDMA have profits which is low power, low cost, and low microwave output.

  • PDF

A Study on the Fire Safety of the several Oils for the Vehicles (차량용 오일의 화재안전성에 관한 연구)

  • Lee, Hae Pyeong;Park, Young Ju;Lee, Seung Chul;Kim, Hae Rim
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.194-194
    • /
    • 2011
  • 현대 사회에서 차량을 비롯한 선박, 항공기와 같은 각종 수송수단들은 그 용도와 형태도 다양하고 널리 보급되어있을 뿐만 아니라 각 분야에서 없어서는 안 될 필수품이 되어 있다. 그러나 수송수단의 수와 활용빈도수가 증가함에 따라 그로 인한 차량화재, 선박화재 그리고 항공기화재 등과 같은 특수화재의 발생에 따른 재산 및 인명피해의 문제점들도 함께 늘어나고 있는 실정이다. 2009년 기준, 1년 동안의 전체 화재발생건수 47,071건 가운데 차량화재의 발생건수가 5,958건으로서 전체의 12.6% 정도를 차지하였다. 그뿐만 아니라 차량 내장재의 주 재질은 가연성을 지닌 열가소성 합성수지들로서 화재가 발생하였을 경우, 다량의 가연성 가스 및 독성가스를 방출하기 때문에 인명 및 재산 피해를 증가시키는 문제점을 갖고 있다. 하지만 아직까지도 이와 같은 수송수단에 대한 화재를 예방하거나 피해를 최소화할 수 있는 화재진압대책 등에 관한 연구는 미흡한 실정이다. 따라서 본 연구에서는 이러한 문제점을 해결하고 과학적이며 체계적인 대응방안을 수립하기 위한 기초 자료를 확보하고 이를 통한 수송수단의 화재안전성을 분석하고자 각종 수송수단에서 사용되는 오일을 대상으로 연소특성 분석 및 화재하중에 관한 연구를 수행하였다. 분석 대상 오일은 연료용과 부속용 오일로 크게 분류되며, 연료용 오일로는 차량용 경유와 휘발유 그리고 군용차량용 경유, 항공기용 백등유와 제트유, 선박용 고유황경유 등을 선정하였다. 부속용 오일로는 브레이크오일, 파워오일, 엔진오일, 자동변속기오일, 수동변속기오일을 대상으로 각각 일반용과 고급형 2가지씩 시료를 선정하여 분석을 수행하였다. 분석방법은 대상오일들의 기초물성을 고찰하기 위해서 비중계를 이용하여 각 시료들의 비중을 측정하였으며, 문헌으로부터 끓는점, 어는점 및 점도 등을 조사하였다. 또한, 대상오일들의 착화특성을 살펴보고자 콘칼로리미터와 인화점 측정기 및 발화점 측정기 등을 이용하여 발열량, 착화시간, 발연량, 발화점, 인화점 등을 측정하였다. 대상오일들의 물성 및 착화특성에 대한 측정결과를 살펴보면, 비중은 $725.8{\sim}1072.0kg/m^3$ 정도의 값을 나타냈고, 인화점은 영하의 인화점을 갖는 휘발유의 경우, 장비의 특성상 분석이 곤란하여 측정하지 못하였으며, 다른 시료들은 $45.3{\sim}266.6^{\circ}C$정도의 값을 나타냈다. 발화점은 $325.7{\sim}600.6^{\circ}C$정도의 값을 갖는 것으로 나타났다. 따라서 이와 같은 결과들을 활용하면 차량, 선박, 항공기 등에 대한 화재발생과 관련된 화재안전성을 분석하고 이를 통한 수송시스템의 화재에 대한 예방 및 대응 방안의 효율성을 높일 수 있을 것으로 생각된다.

  • PDF