Browse > Article
http://dx.doi.org/10.5762/KAIS.2019.20.5.81

Growth of Tin Dioxide Nanostructures on Chemically Synthesized Graphene Nanosheets  

Kim, Jong-IL (Department of Advanced Chemical Engineering, Mokwon University)
Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.20, no.5, 2019 , pp. 81-86 More about this Journal
Abstract
Metal oxide/graphene composites have been known as promising functional materials for advanced applications such as high sensitivity gas sensor, and high capacitive secondary battery. In this study, tin dioxide ($SnO_2$) nanostructures were grown on chemically synthesized graphene nanosheets using a two-zone horizontal furnace system. The large area graphene nanosheets were synthesized on Cu foil by thermal chemical vapor deposition system with the methane and hydrogen gas. Chemically synthesized graphene nanosheets were transferred on cleaned $SiO_2$(300 nm)/Si substrate using the PMMA. The $SnO_2$ nanostuctures were grown on graphene nanosheets at $424^{\circ}C$ under 3.1 Torr for 3 hours. Raman spectroscopy was used to estimate the quality of as-synthesized graphene nanosheets and to confirm the phase of as-grown $SnO_2$ nanostructures. The surface morphology of as-grown $SnO_2$ nanostructures on graphene nanosheets was characterized by field-emission scanning electron microscopy (FE-SEM). As the results, the synthesized graphene nanosheets are bi-layers graphene nanosheets, and as-grown tin oxide nanostructures exhibit tin dioxide phase. The morphology of $SnO_2$ nanostructures on graphene nanosheets exhibits complex nanostructures, whereas the surface morphology of $SnO_2$ nanostructures on $SiO_2$(300 nm)/Si substrate exhibits simply nano-dots. The complex nanostructures of $SnO_2$ on graphene nanosheets are attributed to functional groups on graphene surface.
Keywords
Chemical Vapor Deposition; Graphene; Nanostructure; Tin Oxide; Vapor Transport Method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, pp. 666-669, October, 2004. DOI:https://dx.doi.org/10.1126/science.1102896   DOI
2 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, "Large scale pattern growth of graphene films for stretchable transparent electrodes", Nature, Vol. 457, pp. 706-710, February, 2009. DOI: https://dx.doi.org/10.1038/nature07719   DOI
3 G. R. Yazdi, T. Iakimov, R. Yakimova, "Epitaxial Graphene On SiC : A Review of Growth and Characterization", Crystals, Vol. 6, pp. 53-97, May, 2016. DOI:https://dx.doi.org/10.3390/cryst6050053   DOI
4 N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, C. H. Voon, "Synthesis of graphene oxide using modified Hummers method : solvent influence", Procedia Engineering, Vol. 184, pp. 469-477, April, 2017. DOI:https://dx.doi.org/10.1016/j.proeng.2017.04.118   DOI
5 X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, "A $SnO_{2}$/graphene composite as a high stability electrode for lithium ion batteries", Carbon, Vol. 49, pp. 133-139, September, 2011. DOI:https://dx.doi.org/10.1016/j.carbon.2010.08.052   DOI
6 H. J. Park, Y. S. Chung, S. H. Lee, E. J. Lee, H. S. Ahn, S. H. Kim, D. J. Kim, "$SnO_{2}$/graphene oxide composites on VOC gas sensing properties", Journal of the Electrochemical Society, Vol. 164, No. 13, pp. B690-B694, October, 2017. DOI:https://dx.doi.org/10.1149/2.1381713jes   DOI
7 Y. Xie, S. Yu, Y. Zhong, Q. Zhang, Q. Zhang, Y. Zhou, "$SnO_{2}$/graphene quantum dots composited photocatalyst for efficient nitric oxide oxidation under visible light", Applied Surface Science, Vol. 448, pp. 655-661, April, 2018. DOI:https://dx.doi.org/10.1016/j.apsusc.2018.04.145   DOI
8 S. G. Chatterjee, S. Chatterjee, A. K. Ray, A. K. Chakraborty, "Graphene-metal oxide nanohybrids for toxic gas sensor", Sensors and Actuators B, Vol. 221, pp. 1170-1181, December, 2015. DOI:http://dx.doi.org/10.1080/22243682.2013.771917   DOI
9 A. Debataraja. A. R. Muchtar, N. L. W. Septiani, B. Yuliarto, Nugraha, B. Sunendar, "High performance carbon monoxide sensor based on nano composite of $SnO_{2}$-graphene", IEEE Sensors Journal, Vol. 17, No. 24, pp. 8297-8305, December, 2017. DOI:https://dx.doi.org/10.1109/jsen.2017.2764088   DOI
10 L. Li, A. Kovalchuk, J. M. Tour, "$SnO_{2}$-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability", Nano Research, Vol. 7, No. 9, pp. 1319-1326, May, 2014. DOI:https://dx.doi.org/10.1007/s12274-014-0496-x   DOI
11 M. K. Singh, R. K. Pandey, R. Prakash, "High-performance photo detector based on hydrothermally grown $SnO_{2}$ nanowire/reduced graphene oxide (rGO) hybrid material", Organic Electronics, Vol. 50, pp. 359-366, August, 2017. DOI:https://dx.doi.org/10.1016/j.orgel.2017.08.016   DOI
12 H. Na, J. H. Park, J. H. Hwang, J. B. Kim, "Site-specific growth and density control of carbon nanotubes by direct deposition of catalytic nanoparticles generated by spark discharge", Nanoscale Research Letters, Vol. 8, October, 2013. DOI:https://dx.doi.org/10.1186/1556-276X-8-409
13 S. Y. Ma, X. H. Yang, X. L. Huang, A. M. Sun, H. S. Song, H. B. Zhu, "Effect of post-annealing treatment on the microstructure and optical properties of ZnO/PS nanocomposite films", Journal of Alloys and Compounds, Vol. 566, pp. 9-15, March, 2013. DOI:https://dx.doi.org/10.1016/j.jallcom.2013.02.179   DOI
14 S-A. Oh, K-C. Kim, "Growth of vanadium dioxide nanostructures on graphene nanosheets", Thin Solid Films, Vol. 676, pp. 151-156, 2019. DOI:https://dx.doi.org/10.1016/j.tsf.2019.01.014   DOI
15 J-I. Kim, K-C. Kim, "The influence of oxygen gas flow rate on growth of tin dioxide nanostructures", Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No.10, pp. 1-7, October, 2018. DOI:https://dx.doi.org/10.5762/KAIS.2018.19.10.1
16 Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, J. Hou, "Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources", ACS Nano, Vol. 5, No. 4, pp. 3385-3390, March, 2015. DOI:https://dx.doi.org/10.1021/nn200854p   DOI