• Title/Summary/Keyword: 가스조성

Search Result 1,129, Processing Time 0.024 seconds

A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of Natural Gas [1] (천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [1])

  • Kim, So-Hee;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.552-558
    • /
    • 2011
  • In this paper, simulation works for a cascade refrigeration cycle using propane, ethylene and methane as a refrigerant have been performed for the liquefaction of natural gas using Peng-Robinson equation of state built-in PRO/II with PROVISION release 8.3. The natural gas feed compositions were supplied from Korea Gas Corporation and the flow rate was assumed to be 5.0 million tons per annual. Supply temperature for propane refrigerant was fixed as $-40^{\circ}C$, that for ethylene refrigerant as $-95^{\circ}C$, and that for methane refrigerant as $-155^{\circ}C$. Natural gas was finally cooled and liquefied to $-162^{\circ}C$ by Joule-Thomson expansion. Conclusively, 91.64% by mole of the natural gas liquefaction ratio was obtained through a cascade refrigeration cycle and Joule-Thomson expansion.

Characteristics of Flow Rate Control for Solid Fuel Gas Generator (고체연료를 사용하는 가스발생기 유량조절특성 연구)

  • Choi, Ho-Jin;Hyun, Hyung-Soo;Lee, Kyoung-Ho;Park, Ik-Soo;Lee, Jae-Youn;Youn, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.293-298
    • /
    • 2011
  • The combustion and flow-rate control characteristics of fuel-rich gas generator which could be adopted to Ducted Rocket propulsion system are investigated. The gas generator is designed considering the design requirements of propulsion system and solid fuel for fuel-rich combustion is developed then adopted to ground test. The results of combustion test show the necessity of the special analysis tool for estimating the gas generator performance where multi-phase flow of fuel-rich gas exists. During the flow-rate control test, characteristics of gas generator pressure with the angle of valve are analyzed and, method to estimate the pressure of gas generator is suggested using the relation between the valve exit area and discharge coefficient.

  • PDF

Analysis of Flow Character and Gas Measurement from Final Cover Soil of sanitary Landfill (쓰레기 매립지 최종 복토층에서 가스 측정방법과 유출특성 해석)

  • 이해승
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.75-86
    • /
    • 1998
  • This paper is going to show the way we can sample the landfill gases flowing out to the air through final cover soil by using an closed chamber in the field for a short time. In addition, we came to the following results through the application of model with actual measurements. 1) Analyzing changes of concentration in the chamber(H: 10-30cm) every 5 minutes, considering analysis time of gas chromatograph for an half hour. 2) The proportion of $CE_4$to $CO_2$changes rapidly near the surface of final cover soil by the influence of methane oxidation reaction. 3) When flux of landfill gas is F=$10^{-5}$mol/$\textrm{m}^2$.s), methane oxidation reaction has an influence on composition of gases, however there is little influence when F=$10^{-6}$ mol/($\textrm{m}^2$.s).

  • PDF

반도체 세정 공정용 가스 클러스터 장치 내 발생 클러스터 크기 분포에 관한 수치해석적 예측

  • Kim, Ho-Jung;Choe, Hu-Mi;Yun, Deok-Ju;Lee, Jong-U;Gang, Bong-Gyun;Kim, Min-Su;Park, Jin-Gu;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.40-40
    • /
    • 2011
  • 반도체 소자의 미세화와 더불어 세정공정의 중요성이 차지하는 비중이 점점 커지고, 이에 따라 세정 기술 개발에 대한 요구가 증대되고 있다. 기존 세정 기술은 화학약품 위주의 습식 세정 방식으로 패턴 손상 및 대구경화에 따른 어려움이 있다. 따라서 건식세정 방식이 활발하게 도입되고 있으며 대표적인 것이 에어로졸 세정이다. 에어로졸 세정은 기체상의 작동기체를 이용하여 에어로졸을 형성하고 표면 오염물질과 직접 물리적 충돌을 함으로써 세정한다. 하지만 이 또한 생성되는 에어로졸 내 발생 입자로 인해 패턴 손상이 발생하며 이러한 문제점을 극복하기 위하여 대두되는 것이 가스클러스터 세정이다. 가스 클러스터란 작동기체의 분자가 수십에서 수백 개 뭉쳐 있는 형태를 뜻하며 이렇게 형성된 클러스터는 수 nm 크기를 형성하게 된다. 그리고 짧은 시간의 응축에 의해 수십 nm 크기까지 성장하게 된다. 에어로졸 세정과 다르게 클러스터가 성장할 환경과 시간을 형성하지 않음으로써 작은 클러스터를 형성하게 되며 이로 인해 패턴 손상 없이 오염입자를 제거하게 된다. 이러한 가스 클러스터 세정을 최적화하기 위해서는 설계 단계부터 노즐 내부 유동의 수치해석에 기반한 입자 크기 분포를 계산하여 반영하는 것이 필요하다. 따라서 본 연구에서는 상용 수치해석 프로그램을 이용하여 세정 환경을 조성하는 조건에서의 노즐 내부 유동을 해석하고, 이를 통해 얻어진 수치를 이용하여 aerosol general dynamic equation (GDE)를 계산하여 발생하는 클러스터의 크기 분포를 예측하였다. GDE 계산 시 입자의 크기 분포를 나타내기 위해서는 여러 가지 방법이 존재하나 본 연구에서는 각 입자 크기 노드별 개수 농도를 계산하였다. 노즐 출구에서의 가스 클러스터 크기를 예측하기 위하여 먼저, 노즐 내부 유속 및 온도 분포 변화를 해석하였다. 이를 통하여 온도가 급격하게 낮아져 생성된 클러스터의 효과적 가속 및 에너지 전달이 가능함을 확인할수 있었다. 이에 기반하여 GDE를 이용한 입자 크기를 예측한 결과 수 나노 크기의 초기 클러스터가 형성되어 온도가 낮아짐에 따라 성장하는 것을 확인할 수 있었으며, 최빈값의 분포가 실험적 측정값과 일치하는 경향을 가지는 것을 볼 수 있었다. 이는 향후 확장된 영역에서의 유동 해석과 증발 등 세부 요소를 고려한 계산을 통해 가스 클러스터 세정 공정의 최적화된 설계에 도움이 될 것이다.

  • PDF

Fundamental Study on the Maintenance Technology for SF6 Gas Condition using Pressure and UHF Sensors (UHF 및 가스센서를 이용한 SF6 가스 상태 감시기술 기초연구)

  • Ahn, Hee-Sung;Cho, Sung-Chul;Eom, Ju-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.20-27
    • /
    • 2007
  • [ $SF_6$ ] gas for compacted power facilities has a important role as an insulation gas. It is very blown well that $SF_6$ gas has the superior characteristics as an insulation gas. For reliable operation of SF6-gas-based high and medium voltage equipment it is very important to keep the insulation ability within a safe range. And the experimental and measuring system were implemented. The test chamber designed to endure up to 3 atmospheric pressure. The analysis results of the experimental data shows that positive partial discharge can be detected by discharge current and UHF signal. Additionally it is shown the possibility that $CO_2$ gas sensor of semiconductor type can be detect the variation of $SF_6$ gas condition. The UHF sensor shows good feature to detect the variation of $SF_6$ gas condition for partial discharge and breakdown discharge.

Stress and Strain Distribution of Gas Pipe According to Buried Depth (매설심도에 따른 가스 배관의 응력 변형 특성)

  • Cho, Jinwoo;Choi, Bonghyuck;Cho, Wonbeom;Kim, Jinman;Hong, Seongkyeong;Jeong, Sekyoung;Kim, Joonho
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.51-57
    • /
    • 2013
  • Recently, improvement of materials and technologies for the manufacturing of gas pipe has it possible to reduce the buried depth. Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline(about 50cm deeper). Therefore, this study investigated the effect of various buried depth(0.8m, 1.0m, 1.2m) on the stress and strain distribution of gas pipe. Numerical analysis and field tests were carried out with API 5L steel gas pipes. From the results, it can be suggested that the change of buried depth would not significantly affect the stress and strain distribution of gas pipe.

An Experimental Study of the Infrared Signal for Exhaust Plume with Bypass Ratio (바이패스비에 따른 배기가스의 적외선 신호측정 실험연구)

  • Joo, Milee;Jo, Sungpil;Choi, Seongman;Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.1-9
    • /
    • 2019
  • Infrared signal and exhaust gas temperature distribution with bypass ratio were measured using a micro turbojet engine. Micro turbojet engine was modified to simulate the turbofan engine behaviour. Core flow was simulated using the jet flow of the micro turbojet engine, and high-pressure air was supplied to its external duct to simulate bypass flow. The effects of bypass ratios (0.5, 1.0, and 1.4) were examined. The experimental results indicate that the infrared signal decreases as the bypass ratio increases. And also gas temperature decreases with bypass ratios. Additionally, Schlieren visualization of the exhaust gas plume was conducted. From the exhaust gas temperature distribution and Schlieren images, the structure of jet plume with various bypass ratios was understood.

Syngas Concentration and Efficiency in Heavy Residual Oil Gasification with 1 Ton/Day-Class Entrained-Bed Reactor (1톤/일급 분류층 가스화기에서 중질잔사유의 가스화 합성가스 조성 및 효율 변화)

  • 주지선;나혜령;윤용승
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2003
  • With the 1 ton/day-class entrained-bed gasification system, heavy residual oil from local refinery was gasified at the operating conditions of 1,000~1,20$0^{\circ}C$ and 3 $kg_f$/$\textrm{cm}^2$ in order to determine the variation of syngas composition, carbon conversion, and cold gas efficiency. Produced syngas consists of mainly CO, H$_2$, $CO_2$, and the methane concentrations. Results yielded a maximum syngas composition of 45% H$_2$ and 26%, CO at the 31 kg/hr feeding condition. The maximum carbon conversion and cold gas efficiency were 87% and 68%, respectively at the feeding conditions of 20 kg/hr and oxygen/feed ratio of 1.2. When oxygen feeding amount that is one of the most important operating parameter in gasification was increased, concentration of hydrogen in the syngas is greatly increased comparing to the concentration of CO and $CO_2$. The temperature exhibited about 11$0^{\circ}C$ raise while oxygen/feed ratio changed from 0.6 to 1.2. Methane concentration showed enhanced dropping rate with increase in gasifier temperature and the useful relationship between the gasifier temperature and methane concentration existed such that it can be employed as an indirect measure of inside gasifier temperature.

Estimation Method of the Interchangeability Using Equivalent Gases in a Partial Premixed Gas Appliance (등가가스를 이용한 부분예혼합 가스기기의 호환성 판정법)

  • Kim, Jong-Min;Lee, Seung-Ro;Ha, Young-Cheol;Lee, Sung-Min;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.761-766
    • /
    • 2010
  • The estimation method of the interchangeability in a partial premixed appliance about various compositions of natural gases using equivalent gases, experimentally. The results of the experiment in which equivalent gases were used compared with those obtained in experiments in which natural gases were used; Images of flames, lift-off limits, CO emissions, and incomplete combustion indices in KS standard for the domestic gas range were considered. From the comparison, it was observed that the length and color of the flame of the equivalent gases were almost the same as those of imported natural gases. Further, in the case of gases with Wobbe indices greater than 51 MJ/$m^3$, the KS standard for lifting limits was satisfied. Furthermore, in the case of gases with Wobbe indices less than 56.3 MJ/$m^3$, the CO mole fractions are in the range 95-100 ppm. Hence, the range of Wobbe indices 51-56.3 MJ/$m^3$ was proposed to be the range for interchangeability from the points of view of lifting limits and incomplete combustion, as prescribed in the domestic gas range in the case of imported natural gases.

Development of standard gas mixtures of hydrocarbons in methane contained in aluminum cylinders (알루미늄 실린더에서 혼합 탄화수소(C6-C10) 표준가스 개발)

  • Kim, Yong-Doo;Bae, Hyun-Kil;Woo, Jin-Chun;Lee, Sangil;Oh, Sang-Hyub;Lee, Jin Hong
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.287-294
    • /
    • 2017
  • As the demand for natural gas increases with industrial development, the supply of natural gas is expected to become unstable with a shortage of imported natural gas. It is hence necessary to meet this demand by introducing and developing various types of natural gas, such as pipeline natural gas (PNG) and substituted natural gas (SNG), in addition to liquefied natural gas (LNG). The components included in PNG as well as their concentrations must be measured accurately, and a standard gas should be developed to accurately measure hydrocarbons ($C_6-C_{10}$), which are trace components included in natural gas. The components in the primary standard gas mixtures (PSMs) developed in the present study were hexane, heptane, octane, nonane, and decane with concentrations of $10-30{\mu}mol/mol$ with methane as the balance gas. Standard hydrocarbon ($C_6-C_{10}$) gas mixtures were prepared in aluminum cylinders by a gravimetric method with traceability following ISO 6142 with raw material gases, for which the purity of each component was analyzed completely. The prepared standard gas mixtures were analyzed by to evaluate the preparation consistency between the standard gas mixtures, the adsorbability of the cylinders, the variation of the stability, and the uncertainty. The results showed that aluminum cylinders have little adsorptive loss on their internal surfaces with excellent long-term stability. The developed standard gas mixture, containing hexane, heptane, octane, nonane, and decane with concentrations of $10-30{\mu}mol/mol$, showed an uncertainty in a range of 0.79 % - 1.63 %.