• Title/Summary/Keyword: 가스밸브

Search Result 418, Processing Time 0.029 seconds

Study for Fire Examples of LPG Leakage Including Fuel hose, Injector and Pressure Regulator Connector in Vehicle (자동차 연료호스, 인젝터 및 압력조절기 연결부에서 LP 가스 누출에 의한 화재사례 고찰)

  • Lee, Il Kwon;Kook, Chang Hoo;Suh, Moon Won;Jung, Dong Hwa
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • The purpose of this paper is to study for fire example by fuel leakage in LPG Vehicle. At first example, the car was repaired the fuel line that was connected with pressure hose between fuel regulator and injector in engine. But the service man was not very tighten with regular torque. At a result, the gas leaked on hot parts of engine. It verified the production of fire by engine heat. At second example, when the repair man, after replacement the injector, inserted the injector in a assembling part of it, he didn't the transform condition of fixing part. Therefore, the tearing phenomenon of O ring producted the controlled leakage of fuel by the injector deflection. It found the fact that the fuel leaked with gap of O ring. At third example. the fuel-cut solenoid valve was lined with pressure regulator unit. But the service man didn't throughly certify the leaked work of connected parts after repaired it. As a result, it certified the fire by engine heating leaked liquefied petroleum gas. Therefore it have to minimize the fire production that the driver should do no problem to throughly manage the fuel system.

A Study on the Pressure Variation of Intake Pipe and the Volumetric Efficiency in a Multi-Cylinder Engine (다실린더기관 흡기관내의 압력변동과 체적효율에 관한 연구)

  • 서정일;조진호;김형섭;김병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.179-188
    • /
    • 1990
  • The characteristic of volumetric efficiency considering gas exchange process in a reciprocating engine is presented in this paper. The characteristic method is used for solving gas exchange problems of engine system in theoretical studies. The validity of the simulation is investigated by a comparison with the results obtained by the experiment which have been performed on the practical 4-cycle, 4-cylinder gasoline engine. The relationship between the volumetric efficiency and the intake pressure variation according to configuration of intake pipe, position of branch point, valve timing, compression ratio is clarified through simulation and experiment. The results predicted by the simulation are found to be in approximate agreement with those obtained by the experiment.

Transient Analysis of a Liquid Rocket Engine System Considering Thrust Control (추력 제어를 고려한 액체로켓 엔진시스템 과도해석)

  • Park Soon-Young;Choi Hwan-Seok;Seol Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.67-75
    • /
    • 2004
  • It is essential to develop a transient analysis model for the turbopump-fed type liquid rocket engine development, especially for deriving the number of test and its parameters. In this study we proposed a mathematical model of turbopump-fed type liquid rocket engine, and inspected transient mode changes of a rocket engine according to variations of thrust control valve opening ratio. To verify the results, we solved the same problem with AnaSyn software from Russia, and concluded that the results of transient code we developed deviated within 2% from AnaSyn results. Also, using the transient engine analysis code we showed the possibility to find out the system level design Parameters of the components. For example, we modeled a pressure stabilizer which is used to control the consistency of mixture ratio in the gas generator as forced damping system, and found the stability range of the natural frequency and the damping ratio with the transient engine system analysis code.

A Study of Hydrodynamics and Reaction Characteristics in Relation to the Desulfurization Temperatures of Zn-Based Solid Sorbent in the Lab-scale High Pressure and High Temperature Desulfurization Process (실험실규모 고온고압건식탈황공정의 수력학적 특성 및 탈황온도에 따른 아연계 탈황제의 반응특성 연구)

  • Kyung, Dae-Hyun;Kim, Jae-Young;Jo, Sung-Ho;Park, Young Cheol;Moon, Jong-Ho;Yi, Chang-Keun;Baek, Jeom-In
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.492-498
    • /
    • 2012
  • In this study, hydrodynamics such as solid circulation rate and voidage in the desulfurizer and the reaction characteristics of Zn-based solid sorbents were investigated using lab-scale high pressure and high temperature desulfurization process. The continuous HGD (Hot Gas Desulfurization) process consist of a fast fluidized bed type desulfurizer (6.2 m tall pipe of 0.015 m i.d), a bubbling fluidized bed type regenerator (1.6 m tall bed of 0.053 m i.d), a loop-seal and the pressure control valves. The solid circulation rate was measured by varying the slide-gate opening positions, the gas velocities and temperatures of the desulfurizer and the voidage in the desulfurizer was derived by the same way. At the same gas velocities and the same opening positions of the slide gate, the solid circulation rate, which was similar at the temperature of $300^{\circ}C$ and $550^{\circ}C$, was low at those temperatures compared with a room temperature. The voidage in the desulfurizer showed a fast fluidized bed type when the opening positions of the slide gate were 10~20% while that showed a turbulent fluidized bed type when those of slide gate were 30~40%. The reaction characteristics of Zn-based solid sorbent were investigated by different desulfurization temperatures at 20 atm in the continuous operation. The $H_2S$ removal efficiency tended to decrease below the desulfurization temperature of $450^{\circ}C$. Thus, the 10 hour continuous operation has been performed at the desulfurization temperature of $500^{\circ}C$ in order to maintain the high $H_2S$ removal efficiency. During 10 hour continuous operation, the $H_2S$ removal efficiency was above 99.99% because the $H_2S$ concentration after desulfurization was not detected at the inlet $H_2S$ concentration of 5,000 ppmv condition using UV analyzers (Radas2) and the detector tube (GASTEC) which lower detection limit is 1 ppmv.

Evaluation of Damage Range Variation Based on Operation System of Chlorine Facility in Water Purification Plant using KORA (KORA를 활용한 정수장 염소 취급시설의 운영조건에 따른 피해범위 변화 평가)

  • Kwak, Sollim;Lim, Hyeongjun;Ryu, Taekwon;Choi, Woosoo;Jung, Jinhee;Lee, Jieun;Kim, Jungkon;Lee, Yeonhee;Ryu, Jisung;Yoon, Junheon;Yoon, Yi;Lee, Jinseon
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.84-90
    • /
    • 2018
  • We researched the way to minimize the damage when the chlorine-leak accident take place in a purification plant. Since the level of risk based on the Off-site Risk Assessment(ORA) is a combination of proportional to the number of residents in the damaged area and frequency of accidents, we suggested the adequate conditions to reduce the number of residents in the damaged area by means of the operating temperature of a handling facility, installation of a emergency shut-off valve, and the analysis of the variation of the damaging range in accordance with the type of enclosure. The coverage of damage was calculated by the 'KORA(Korea Off-site Risk Assessment Supporting Tool) program. The research shows that the lower operating temperature gets, the more emergency shut-off valve being installed and the higher enclosure level of facility becomes, the extent of damage gets decreased. The decreasing rate of worst case was 17.6%, 71%, 34.5% respectively, the decreasing rate of alternative case was 31.6%, 69.0%, 34.8% respectively.

Experimental Study on the Performance Characteristics of Air Hybrid Engine (Air hybrid 엔진의 구동 특성에 관한 실험적 연구)

  • Lee, Yong-Gyu;Kim, Yong-Rae;Kim, Young-Min;Park, Chul-Woong;Choi, Kyo-Nam;Jeong, Dong-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.50-56
    • /
    • 2011
  • A preliminary experimental study of new concept air hybrid engine, which stores compressed air in the tank during braking and re-use it to propel vehicle during crusing or acceleration, was carried out in this study. A single cylinder engine was modified to realize the concept of air hybrid engine. Independent variable valve lift system was adopted in one of the exhaust valves to store the compressed air into the air tank during compression period. An air injector module was installed in the place of spark plug, and the stored compressed air was supplied during the expansion period to realize air motoring mode. For air compression mode, the tank with volume of 30 liter could be charged up to more than 13 bar. By utilizing this stored compressed air, motoring work of 0.41 bar of IMEP(Indicated mean effective pressure) at maximum can be generated at the 800rpm conditions, which is higher than the case of normal idle condition by 1.1 bar of IMEP.

Study for Failure Examples Involved to Spark Plug Assembling Part Damage, Timing Maladjustment and Alien Substance Insertion in Intake Valve Part on LPG Vehicle Engine (자동차용 LPG 엔진의 점화플러그 장착 부 손상, 점화시기 조정불량, 흡입밸브 부 이물질유입 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Sung Mo;Hwang, Han Sub;Jung, Dong Hwa;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.22-27
    • /
    • 2021
  • This paper is a purpose to study the failure examples for LPG vehicle. The first example, the researcher certified the incongruity phenomenon decreased engine power by ignition fire leakage because of spark plug threaded part damage assembling in cylinder head. The second example, the timing mark that accurately adjusting the camshaft and crankshaft position were twisted about 0.5 block each other. Finally, the researcher seeked the disharmony phenomenon as it couldn't set ignition timing. The third example, the researcher knew the failure phenomenon by interrupted the closing period for intake valve moving with air flow in the number 3 port of cylinder head as the foreign substance in cylinder head didn't remove. Therefore, the manager of a car has to thorough going inspect and the manufacture of a car must remove the cause of failure with quality assurance.

Study on the simulation of a spark ignition engine using BOOST (상용 소프트웨어를 이용한 스파크 점화 기관의 시뮬레이션에 관한 연구)

  • Jeong, Chang-Sik;Woo, Seok-Keun;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.733-742
    • /
    • 2016
  • In recent years, gas engines fueled with LNG or synthetic gas have been attracting considerable attention for marine use owing to their potential to facilitate better fuel economy and to reduce emissions. It has been confirmed that gas engines using the Otto cycle, which involves premixed combustion, can satisfy Tier III regulations without the EGR or SCR system. The objective of this study is to acquire simulation technologies for predicting gas engine performances in industrial fields. Using the commercial software BOOST, the simulation is conducted on a gasoline engine rather than a marine engine due to the gasoline engine's easier accessibility. This study consists of two stages. In the first stage published previously, the optimal modeling techniques for representing the behavior of the gas in the intake and exhaust systems were determined. In the current study, we formulated a method to evaluate the combustion and heat transfer processes in the cylinder and to ultimately determine the major performance parameters, given that the analytical model derived from the previous stage has been applied. Through this study, we were able to determine a combustion and heat transfer model and a valve discharge coefficient that are less reliant on empirical data: we were also able to formulate a methodology through which relevant constants are decided. We confirmed that the values of transient cylinder pressure variation, indicated mean effective pressure, and air supply can be successfully predicted using our modeling techniques.

A Study on the Recovery of Electricity Energy by Employing Double Turbo-Expander Pressure Reduction System to the Seasonal Variation of Natural Gas Flow Rates (천연가스의 계절별 변동유량을 고려한 이중터보팽창기 감압시스템을 이용한 전기에너지회수에 관한 연구)

  • Park, Cheol-Woo;Yoo, Han Bit;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.74-81
    • /
    • 2019
  • Expansion turbine system to recover the electricity energy from natural gas transmission stations is a well-known technique. The turbo-expander efficiency depends on the ratio of the natural gas flow rates to the design flow rate of the turbo-expander. However, if there is a big difference of the natural gas flow rate through the pressure letdown station because of seasonal supply pattern, that is, high flow rate in winter while low flow rate in summer, single turbo-expander system is not so efficient as to recover the pressurized energy from the low flow-rate natural gas. Therefore, we have proposed a new concept of double turbo-expander system: one is a big capacity and the other a small capacity. Here we have theoretically computed the electric powers at the pressure reduction from 18.5 bar to 7.5 bar depending on the inlet conditions of temperature and flow rate. The calculated electricity generation has been increased by 30% from 12.4 MW in a single turbo expander to 16.1 MW in the proposed double turbo-expander system when a minimal design efficiency of 0.72 is applied.

터보펌프 공급식 액체 로켓엔진의 시동 과도 해석

  • Park, Soon-Young;Nam, Chang-Ho;Moon, In-Sang;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.142-152
    • /
    • 2005
  • There are two definite objects for developing the startup transient of liquid rocket engine. One is to achieve the repeatability of startup to ensure higher reliability, and the other is to reduce the time of the startup transient. Typically in the initial phase of engine development as we are currently opposing, it is hard to estimate engine startup time due to the lack of experiences. In this work, a startup transient analysis tool was developed with the introduction of the mathematical model for each component of pump-fed liquid rocket engine system. Startup transient was investigated for a 25 ton class gas generator cycle engine to find necessary time for reaching steady state from startup and this enabled to reveal dynamic characteristics of the engine.

  • PDF