DOI QR코드

DOI QR Code

A Study on the Recovery of Electricity Energy by Employing Double Turbo-Expander Pressure Reduction System to the Seasonal Variation of Natural Gas Flow Rates

천연가스의 계절별 변동유량을 고려한 이중터보팽창기 감압시스템을 이용한 전기에너지회수에 관한 연구

  • Park, Cheol-Woo (Dept. of Chemical Engineering, University of Seoul) ;
  • Yoo, Han Bit (Dept. of Chemical Engineering, University of Seoul) ;
  • Kim, Hyo (Dept. of Chemical Engineering, University of Seoul)
  • 박철우 (서울시립대학교 화학공학과) ;
  • 유한빛 (서울시립대학교 화학공학과) ;
  • 김효 (서울시립대학교 화학공학과)
  • Received : 2019.01.31
  • Accepted : 2019.04.25
  • Published : 2019.04.30

Abstract

Expansion turbine system to recover the electricity energy from natural gas transmission stations is a well-known technique. The turbo-expander efficiency depends on the ratio of the natural gas flow rates to the design flow rate of the turbo-expander. However, if there is a big difference of the natural gas flow rate through the pressure letdown station because of seasonal supply pattern, that is, high flow rate in winter while low flow rate in summer, single turbo-expander system is not so efficient as to recover the pressurized energy from the low flow-rate natural gas. Therefore, we have proposed a new concept of double turbo-expander system: one is a big capacity and the other a small capacity. Here we have theoretically computed the electric powers at the pressure reduction from 18.5 bar to 7.5 bar depending on the inlet conditions of temperature and flow rate. The calculated electricity generation has been increased by 30% from 12.4 MW in a single turbo expander to 16.1 MW in the proposed double turbo-expander system when a minimal design efficiency of 0.72 is applied.

천연가스 운송기지에서 전기에너지를 회수하기위하여 팽창 터빈시스템을 사용하는 것은 잘 알려진 기술이다. 터보팽창기의 효율은 천연가스의 유량과 터보팽창기 설계유량의 비에 따라 달라진다. 그러나 감압기지에서 계절적 공급패턴, 즉 여름에는 낮은 유량으로 반면에 겨울에는 높은 유량으로 공급되기 때문에, 단일 터보팽창기로는 낮은 유량의 천연가스로부터 감압에너지를 충분히 회수하기가 비효율적이다. 따라서 본 연구에서는 대용량과 소용량의 이중 터보팽창기의 새로운 개념을 제안하게 되었다. 본 연구에서는 저압 정압기지에서 팽창밸브의 평균 입구, 출구 압력조건인 18.5 bar에서 7.5 bar로 감압될 때 입구의 온도, 유량조건에 따라서 생산 가능한 전력을 이론적 배경을 통해 계산하였다. 최저 설계 효율 0.72에서 회수 가능한 전력생산량은 단일 터보팽창기로 운전될 때에는 12.4 MW이었으나, 여기서 제안한 이중터보팽창기에서는 16.1 MW로 약 30% 증가한 결과를 얻게 되었다.

Keywords

References

  1. Mirandola, A., and Minca, L., "Energy Recovery by Expansion of High Pressure Natural gas", Proceedings of the 21st Intersociety Energy Conversion Engineering Conference, 1, 16-21, (1986).
  2. Hedman, B. A., "Waste energy recovery opportunities for interstate natural gas pipelines", Interstate Natural Gas Association of America, (2008).
  3. Howard, C., Oosthuizen, P., and Peppley, B., "An investigation of the performance of a hybrid turboexpander fuel cell system for power recovery at natural gas pressure reduction stations", Applied Thermal Engineering, 31(13), 2165-2170, (2011). https://doi.org/10.1016/j.applthermaleng.2011.04.023
  4. Rahman, M. M., "Power generation from pressure reduction in the natural gas supply chain in Bangladesh", Journal of Mechanical Engineering, 41(2), 89-95, (2010). https://doi.org/10.3329/jme.v41i2.7472
  5. Ardali, E. K., and Heybatian, E., "Energy Regeneration in Natural Gas Pressure Reduction Stations by Use of Gas Turbo Expander; Evaluation of Available Potential in Iran", Proceedings 24th world gas conference, 5-9, (2009).
  6. Yoo, H. B., Kim, H., "Feasibility Study of Pressure Letdown Energy Recovery from the Natural Gas Pressure Reduction Stations in South Korea", KIGAS, Vol 19, No 3, 9-17, (2015).
  7. Yoo, H. B., Kim, H., "A Study on the Operational Optimization of Turbo-Expander Pressure Reduction System to the Natural Gas Pressure Flow Rates", KIGAS, Vol 19, No 6, 72-79, (2015).
  8. Bloch, H. P., Soares, C., "Turboexpanders and Process Applications", Gulf Professional Publishing, MA, (2001).
  9. Yoo, H. B., Kim, H., "Electricity Generation by Using Turbo-Expander in Natural Gas Pressure Reduction Stations in Republic of Korea", Proceeding of the Annual Fall Meeting of KICHE 2014, 273, (2014).
  10. Maric, I., "The Joule-Thomson effect in natural gas flow-rate measurements", Flow Measurement and Instrumentation, 16, 387-395, (2005). https://doi.org/10.1016/j.flowmeasinst.2005.04.006
  11. Peng, D. Y., and Robinson, D. B., "A New Two-Constant Equation of State", Ind. Eng. Chem. Fundamen., 15(1), 59-64, (1976). https://doi.org/10.1021/i160057a011
  12. Smith, J. M., Van Ness, H. C., Abbott, M. M., Introduction to Chemical Engineering Thermodynamics, 7th ed., McGraw-Hill, New York, (2005).