• Title/Summary/Keyword: 가스발생기(gas generator)

Search Result 253, Processing Time 0.024 seconds

A Fault Diagnosis of Damage on Inner Liner of Regeneratively-Cooled Combustion Chamber during Gas Generator Cycle Engine Hot Firing Test (가스발생기 사이클 엔진 연소시험 중 재생냉각형 연소기의 내피 손상진단)

  • Hwang, Dokeun;Kim, Hyeon-Jun;Kim, Jong-gyu;Kim, Munki;Lim, Byoungjik;Kang, Donghyuk;Joo, Seongmin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1165-1168
    • /
    • 2017
  • This paper suggests a fault diagnosis of damage on inner liner of regeneratively-cooled combustion chamber during gas generator cycle rocket engine hot firing test. This method focuses on a phenomenon that fuel flow rate difference between two flow estimate methods changes under an inner liner damage of combustion chamber causing fuel leakage and it is expected that it contributes to detect a damage on the combustion chamber in early stage and prevent further destruction during the hot firing test.

  • PDF

Structural Analysis of Gas Generator Regenerative Cooling Chamber (재생냉각형 가스발생기 챔버 구조해석)

  • Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1046-1052
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which was operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreased the thermal load and strain of the cooling channel structure. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

Structural Analysis of Gas Generator Regenerative Cooling Chamber (가스발생기 재생냉각 챔버 구조해석)

  • Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.802-807
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was also conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which is operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion data were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreases the thermal load and strain of the cooling channel. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

  • PDF

An Experimental Study on Combustion Characteristics of Mini Gas Generator by using a Automotive Airbag Inflater (에어백용 인플레이터를 이용한 미니 가스발생기 연소특성 실험연구)

  • Kim, Jong-Han;Lee, Sang-Moo;Kim, Bang-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.881-888
    • /
    • 2013
  • A basic study was performed to develop a mini gas generator by using a commercial automotive airbag inflater. The mini gas generator can be used for industrial and military application like a seat belt pretensioner. Some parameters were experimentally investigated to reduce the size of the inflater. Basic combustion tests were performed in the closed chamber and measured the pressure and the temperature behavior according to the design parameters. From the study, essential parameters were determined to design a mini gas generator.

Modeling of Non-Equilibrium Kinetics of Fuel Rich Combustion in Gas Generator (농후 연소 가스발생기의 비평형 연소 화학반응 모델링)

  • 유정민;이창진
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.89-96
    • /
    • 2006
  • The combustion temperature in gas generator should be kept below around 1,000K to avoid any possible thermal damages to turbine blade by adopting either fuel rich or oxidizer rich combustion. Thus, non-equilibrium chemical reaction dominates in the gas generator. Meanwhile, Kerosene is a compounded fuel mixed with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focus to model the non-equilibrium chemical reaction of kerosene/LOX with detailed kinetics developed by Dagaut using PSR(Perfectly stirred reactor) assumption. Also, droplet evaporation time is taken into account by calculating for the residence time of droplet and by decoupling reaction temperature from the reactor temperature. In Dagaut’s surrogate model for kerosene, chemical kinetics of kerosene consists of 1592 reaction steps with 207 chemical species. The comparison of calculation results with experimental data could provide very reliable and accurate numbers in the prediction of combustion gas temperature, species fraction and other gas properties.

Subscale high altitude simulation test using solid propellant gas generator (고체추진제 가스발생기를 이용한 축소형 고공환경모사 시험)

  • Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Cho, Sang-Yeon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.136-141
    • /
    • 2008
  • Cylindrical supersonic exhaust diffuser, which utilizes the momentum of high temperature gas exhausted from nozzle, provides simple methods for obtaining stable and low pressure around the propulsion system. Hot zone on which exhausted gas from nozzle exit impinges directly should be cooled to avoid melting of diffuser. This paper describes method and result of subscale high altitude simulation test with water cooling. Subscale gas generator with solid propellant was used for hot gas source and tap water for coolant.

  • PDF

Hot-firing Test of Technology Demonstration Model Gas Generator for 75 ton-class Liquid Rocket Engine (75톤급 가스발생기 기술검증시제의 연소시험)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Kim, Mun-Ki;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.225-228
    • /
    • 2009
  • Hot-firing tests were performed on the gas generator which is a technology development/demonstration model for a 75 ton-class liquid rocket engine. A heat-sink type combustion chamber was used for initial performance examination of the injector and mixing head. This paper explains not only preparation works for hot-firing tests but also the acquired results such as pressure, temperature distribution, and pressure fluctuation.

  • PDF

A Study of Chill-down Process in 30 tonf Turbopump-Gas Generator Coupled Tests (30톤급 터보펌프-가스발생기 연계시험에서 예냉 절차 연구)

  • Moon, Yoon-Wan;Nam, Chang-Ho;Kim, Seung-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.447-450
    • /
    • 2012
  • An analysis of chill-down process was performed for 30 tonf Turbopump-Gas generator coupled tests. The chill-down process must be fulfilled before liquid rocket engine test using cryogenic propellant. Cavitation, damage and/or combustion instability due to bubble of propellant must be eliminated by chill-down process in a test specimen, especially cryogenic pump. The analysis of test data obtained by 30 tonf TP-GG coupled tests was performed in order to be based on the test process of KSLV-II liquid propellant rocket engine which will be developed. To macroscopically understand the process of chill-down from the viewpoint of test procedure the temperatures of important part and total time of chill-down process were analyzed.

  • PDF

Propulsion Technologies of Supercavitating Rocket Torpedo, Shkval (초공동 로켓 어뢰 Shkval 추진기술)

  • Kim, Yoon-Gon;Nah, Young-In
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.383-387
    • /
    • 2011
  • The supercavitating rocket torpedo SHKVAL was analyzed in view of its system operation procedure and the structure and performance. 3 different propulsion systems installed in SHKVAL were 1st solid rocket booster for launch and acceleration, 2nd solid rocket booster for further acceleration, and Mg-rich Hydroreactive fuel rocket propulsion system for cruising. The gas generator used to help generate the supercavitation bubble was composed of a solid propellant gas generator and a hydroreactive fuel one. The structures and their performance were described based on as much knowledge as we have obtained from cumulative information and up-to-date analysis.

  • PDF

Comparison Study on System Design Parameters of Gas Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체로켓엔진의 시스템 설계 인자 비교)

  • Nam Chang-Ho;Park Soon-Young;Moon Yoon-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.220-223
    • /
    • 2005
  • System design parameters of gas generator cycle liquid rocket engines were investigated and compared in the present study. Characteristic velocity of combustor, pressure drop of combustor injector, exit pressure of pump, pump efficiency and specific power of turbine were considered as a system design parameter. The result shows the characteristic velocity is in the range of 1700-1770 m/s, pressure drop of combustor injector, 4-10 bar, pump exit pressure ratio to combustion pressure, 120-230%, pump efficiency, 60-80%, specific power of turbine, $0.28-0.58MW{\cdot}s/kg$.

  • PDF