• Title/Summary/Keyword: 가스냉각

Search Result 573, Processing Time 0.023 seconds

Experimental study to enhance cooling effects on total-coverage combustor wall (연소기 내벽의 전면 막냉각 사용시 효율 증대에 관한 연구)

  • Cho, Hyung-Hee;Goldstein, Richard J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.165-173
    • /
    • 1997
  • The present study investigates heat/mass transfer for flow through perforated plates for application to combustor wall and turbine blade film cooling. The experiments are conducted for hole length to diameter ratios of 0.68 to 1.5, for hole pitch-to-diameter ratios of 1.5 and 3.0, for gap distance between two parallel perforated plates of 1 to 3 hole diameters, and for Reynolds numbers of 60 to 13, 700. Local heat/mass transfer coefficients near and inside the cooling holes are obtained using a naphthalene sublimation technique. Detailed knowledge of the local transfer coefficients is essential to analyze thermal stress in turbine components. The results indicate that the heat/mass transfer coefficients inside the hole surface vary significantly due to flow separation and reattachment. The transfer coefficient near the reattachment point is about four and half times that for a fully developed circular tube flow. The heat/mass transfer coefficient on the leeward surface has the same order as that on the windward surface because of a strong recirculation flow between neighboring jets from the array of holes. For flow through two perforated plate layers, the transfer coefficients on the target surface (windward surface of the second wall) affected by the gap spacing are approximately three to four times higher than that with a single layer.

Comparison of Counter-Current Cooling and Pool Boiling System Through Modeling and Simulation of a Pilot-Scale Fixed bed Reactor for Dimethyl Ether(DME) Synthesis (Dimethyl Ether(DME) 합성을 위한 파일럿 규모의 고정층 반응기의 모델링과 모사를 통한 향류 냉각방식과 포화액체 풀비등 방식의 비교)

  • Song, Daesung;Go, Jae Wook;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.446-452
    • /
    • 2009
  • The behavior of a one-step fixed bed reactor which directly synthesizes dimethyl ether(DME) from Natural Gas was simulated. In the reactor, the prevention of the occurrence of hot spots which can cause deactivation of catalysts is pivotal, since methanol synthesis and dehydration reaction involved in the synthesis of DME are highly exothermic. Therefore, we simulated and compared performance of the reactor with counter-current cooling and pool boiling system that can be applied to a commercial plant. As a result, we found that counter-current cooling system is more effective in terms of CO conversion and DME productivity. However, pool boiling system can operate in a small temperature gradient that can decrease problems caused by hot spot. And, the system can operate in a safer range.

Study on Application of Cooling System of Automotive Engine for Thermoelectric Generator (열발전소자의 자동차 엔진 냉각시스템 적용 연구)

  • Park, Myungwhan;Hur, Taeyoung;Yang, Youngjoon
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • Thermoelectric generator, which is known as using Seebeck effect, have been widely applied in many industrial parts, for instance, from submarine to equipments capable of producing hot or cooling water. Its usefulness was verified in terms of producing electric power using temperature difference and vice versa. Application on thermoelectric generator has been mainly forced on exhaust gas of automotive engine so far. In this study, the possibility was investigated whether electric power could be produced by using cooling water in automotive engine. As the result, it showed that electric power had differences depending on shapes of power auxiliary apparatus and, in this experiment, maximum of electric power was 1.5 voltage.

Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions (냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성)

  • Ham, Jin-Ki;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.39-47
    • /
    • 2005
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from the case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to the case without fins. As the blowing ratio increases, the effect of rectangular fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins. However, the increase of blockage effect gives more pressure loss in the channel.

A Material characteristics of 490MPa steel by Line Heating Method (490MPa급 강재의 선상가열에의한 재질특성)

  • Cho, Sung-Kyu;Ko, Sang-Ki;Choi, Wong-Kyu;Kim, Jung-Hak
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.58-58
    • /
    • 2009
  • 선박의 선체부분인 선수, 선미 등을 이루고 있는 곡형 외판의 제작은 강판을 원하는 형상으로 성형하기 위하여 벤딩롤러 및 유압프레스를 이용한 냉간가공과 산소-프로판가스 화염을 적용한 선상가열, 삼각가열을 이용한 열간가공으로 크게 구분할 수 있다. 선상가열을 이용한 곡면가공의 원리는 가열토치를 이용하여 강판을 가열하면 가열부는 팽창하게 되고 냉각시에는 수축하게 된다. 이 때 두께방향으로의 소성변형으로 인한 수축량의 차이로 인해 굽혀지게 된다. 최근에는 선박이 고기능 및 대형화로 인해 3차원 곡형 외판 형상이 복잡해지고, 강도를 향상시키기 위하여 합금원소(C, Nb, V, Ti)를 첨가하거나 열처리(노말라이징)를 이용한 고장력강재인 중후판의 적용이 증가하고 있다. 이러한 고강도강재를 선상가열공정으로 제작한 곡형 외판재는 가열, 냉각의 열사이클로 인해 취화되어 인성이 저하 될 수 있다. 본 연구에서는 Normalizing 열처리재인 490MPa급 강재를 이용하여, 현장에서 작업자의 미숙련으로 인해 발생 할 수 있는 최대의 가혹한 조건과 재질에 큰 영향을 미치지 않는 범위를 선정하여 선상가열시의 가열, 냉각조건에 따른 강재의 재질특성을 조사하고자 한다. 이를 위해 가열시 가열부위의 정확한 온도 측정에 역점을 두었으며, 각각 다른 선상가열 조건에 따른 시편을 제작하기 위하여 선상가열 실험장치를 제작하였다. 선상가열 실험 결과 최고가열온도 $1300^{\circ}C,\;950^{\circ}C$에서 수냉 조건인 경우 급격한 인성저하 현상이 발생하며 비록 공냉이라 하더라도 결정립 조대화로 인성 저하가 발생하였다. $800^{\circ}C$가열 후 수냉개시온도를 $700^{\circ}C$이하로 수냉한 경우에는 인성 저하 현상이 개선되고 있음을 알 수 있다.

  • PDF

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.289-296
    • /
    • 2004
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to case without fins. As the blowing ratio increases, the effect of fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins.

  • PDF

A Computational Study on Cooling Analysis of the Flame Deflector for the 75 tonf Class Propulsion Test Facility (75톤급 추진기관 시험설비 화염유도로 냉각해석에 관한 수치적 연구)

  • Moon, Seong-Mok;Cho, Nam-Kyung;Kim, Seong-Lyong;Jun, Sung-Bok;Lee, Kyoung-Hoon;Kim, Dong-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.55-64
    • /
    • 2015
  • In this study, a 3-D flame cooling analysis is conducted to examine thermal safety for the flame deflector of the 75 tonf class propulsion test facility, and the safe discharge of the exhaust gas is assessed by using numerical results. The Mixture multiphase model is adopted for the simulation of heat transfer and phase exchange process between flame and cooling water, and the computational study using the single species unreacted model for the exhaust plume is carried out for the flame cooling. Numerical analysis predicts maximum temperature on the flame deflector wall for different water flow rates, and evaluates the safe minimum flow rate of water corresponding to the fire-resistant temperature for concrete.

Operating Characteristics of 1 $Nm^3/h$ Scale Synthetic Natural Gas(SNG) Synthetic Systems (1 $Nm^3/h$ 규모 합성천연가스(SNG) 합성 시스템의 운전 특성)

  • Kim, Jin-Ho;Kang, Suk-Hwan;Ryu, Jae-Hong;Lee, Sun-Ki;Kim, Su-Hyun;Kim, Mun-Hyun;Lee, Do-Yeon;Yoo, Yong-Don;Byun, Chang-Dae;Lim, Hyo-Jun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.491-497
    • /
    • 2011
  • In this work, we proposed the three different reactor systems for evaluating of synthetic natural gas(SNG) processes using the synthesis gas consisting of CO and $H_2$ and reactor systems to be considered are series adiabatic reaction system, series adiabatic reaction system with the recirculation and cooling wall type reaction system. The maximum temperature of the first adiabatic reactor in series adiabatic reaction system raised to 800. From the these results, carbon dioxide in product gas as compared to other systems was increased more than that expected due to water gas shift reaction(WGSR) and the maximum $CH_4$ concentration in SNG was 90.1%. In series adiabatic reaction system with the recirculation as a way to decrease the temperature in catalyst bed, the maximum $CH_4$ concentration in SNG was 96.3%. In cooling wall type reaction system, the reaction heat is absorbed by boiling water in the shell and the reaction temperature is controlled by controlling the amount of flow rate and pressure of feed water. The maximum $CH_4$ concentration in SNG for cooling wall type reaction system was 97.9%. The main advantage of the cooling wall type reaction system over adiabatic systems is that potentially it can be achieve almost complete methanation in one reactor.

The Study of Energy Conversion in a 2 Ton/day Waste-wood Fixed Bed Gasifier (2톤/일 고정층 가스화기를 이용한 폐목재의 에너지 전환 연구)

  • Lee, See Hoon;Son, Young Il;Ko, Chang Bok;Choi, Kyung Bin;Kim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.391-395
    • /
    • 2009
  • For the conversion of domestic waste-wood into energy, a fixed bed gasifier ($0.9 m{\times}2.4 m$) having the capacity of 2 ton/day was designed and constructed. The dual knife valve was used to feed waste-wood of which size was 3~5 cm and a rotary stoker system was installed in the bottom of gasifier. The pilot gasification system consisted of feeding system, fixed bed gasifier, gravity fine particle collector, heat exchanger for syngas cooling, ID fan, and cooling tower. The operation temperatures of gasifier were $700{\sim}1000^{\circ}C$ and the concentrations of syngas were CO: 25~40 vol%, $H_2$: 7~12 vol%, $CH_4$: 2~4 vol%, $CO_2$: 12~24 vol%. The calorific value of syngas was $1100{\sim}1500kcal/Nm^3$ and was enough to be applied in the industrial combustor. Also the gas engine was operated by using syngas from biomass gasifier and produced 1~4 kW of power.