• Title/Summary/Keyword: 가속내구평가

Search Result 55, Processing Time 0.024 seconds

High Temperature Tensile Stress Behavior of Hydrogen Vessel Composite Materials for Hydrogen Fuel Cell Bus (수소버스용 내압용기 복합재의 열적환경에 따른 기계적 물성 연구)

  • Hyunseok, Yang;Woo-Chul, Jung;Kwang Bok, Shin;Man-Sik, Kong
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.425-430
    • /
    • 2022
  • In this study, the mechanical properties of the pressure vessel composite exposed to the thermal environment were evaluated to establish the standard for high temperature static pressure test of the pressure vessel for hydrogen bus. As the tensile strength of the composite material approaches the glass transition temperature of the epoxy resin, the strength decreases due to the deterioration of the epoxy resin. In addition, it was confirmed that the tensile strength increased again due to the post-curing of the epoxy resin during long-term exposure. Therefore, the accelerated stress rupture test conditions of the pressure vessel for the hydrogen bus should be set based on the epoxy resin properties of the carbon fiber composite material.

Comparison of Catalyst Support Degradation of PEMFC Electrocatalysts Pt/C and PtCo/C (PEMFC 전극촉매 Pt/C와 PtCo/C의 촉매 지지체 열화비교)

  • Sohyeong Oh;Yoohan Han;Minchul Chung;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.341-347
    • /
    • 2023
  • In PEMFC, PtCo/C alloy catalysts are widely used because of good performance and durability. However, few studies have been reported on the durability of carbon supports of PtCo/C evaluated at high voltages (1.0~1.5 V). In this study, the durability of PtCo/C catalysts and Pt/C catalysts were compared after applying the accelerated degradation protocol of catalyst support. After repeating the 1.0↔1.5V voltage change cycles, the mass activity, electrochemical surface area (ECSA), electric double layer capacitance (DLC), Pt dissolution and the particle growth were analyzed. After 2,000 cycles of voltage change, the current density per catalyst mass at 0.9V decreased by more than 1.5 times compared to the Pt/C catalyst. This result was because the degradation rate of the carbon support of the PtCo/C catalyst was higher than that of the Pt/C catalyst. The Pt/C catalyst showed more than 1.5 times higher ECSA reduction than the PtCo/C catalyst, but the corrosion of the carbon support of the Pt/C catalyst was small, resulting in a small decrease in I-V performance. In order to improve the high voltage durability of the PtCo/C catalyst, it was shown that improving the durability of the carbon support is essential.

Decrease of Membrane Degradation in PEMFC by Fucoidan (후코이단에 의한 PEMFC 고분자막의 열화 감소)

  • Oh, Sohyung;Kak, Ahyeon;Oh, Sungjun;Lee, Daewoong;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.59-63
    • /
    • 2020
  • Radical scavenger is used to improve the durability of PEMFC polymer membrane. In this study, we investigated whether fucoidan extracted from seaweed as a radical scavenger prevents electrochemical degradation through Fenton and OCV Holding experiments. Fucoidan has an antioxidant effect, protecting the polymer membrane from hydrogen peroxide and oxygen radicals, reducing the degradation rate to 1/10. Fucoidan has been shown to be more effective than MnO2, which is used as a radical scavenger. In the PEMFC cell, the accelerated durability evaluation method (OCV Holding) showed that fucoidan reduced the hydrogen permeability of the polymer membrane by 12% and enhanced the performance by 29.1% compared to without radical scavenger. And fucoidan was found to be more effective in the cathode side ionomer than the anode side.

Accelerated Life Test of In-Wheel Motor for Mobile Robot (이동로봇용 In-Wheel Motor의 가속수명시험)

  • Kim, Young-Ki;Kim, Sang-Hoon;Kim, Hag-Wone;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.498-505
    • /
    • 2010
  • In-Wheel System is a high-efficiency system to supply a new concept of platform which raises the efficiency of motor drive system and applies it to an environment-friendly automobile by installing a highly efficient electric motor directly to wheels and removing factors of power train. The proliferation of these systems is directly related to the safety of our lives, so check the reliability of the part in the development phase and should be certified. Reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time. This paper presents to the verification methods for durability, one of reliability assessments of the Motor, the study calculated acceleration and deceleration torque and the effective torque from driving conditions of In-Wheel Motor, and based on this, it reduced the test time and suggested the verification methods of In-Wheel Motor reliability through the accelerated life test.

Simulation and Experimental Study on the Impact of Light Railway Train Bridge Due to Concrete Rail Prominence (주행면 단차에 의한 경량전철 교량의 충격 시뮬레이션 및 실험)

  • Jeon, Jun-Tai;Song, Jae-Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.45-52
    • /
    • 2010
  • This study pointed on the dynamic impact of AGT (Automated Guide-way Transit) bridge, due to concrete rail prominence. An experiment was done with 30 m P.S.C. bridge in AGT test line in Kyungsan. An artificial prominence with 10 mm hight, was installed at the mid span of concrete rail. And computer simulation was executed for the artificial prominence. As an experiment result, in the case of with prominence, bridge acceleration responses are increased 50% at the speed range of 20 km/h-60 km/h, and bridge displacement responses increased slightly. With these results, the prominence of concrete rail can be induce excess impact and vibration. And the computer program simulated much the same as experiments. So this program can be used for AGT bridge design and formulate the standard of concrete rail management.

Performance Characteristics of CNG Vehicle at Various Compression Ratios (압축비 변경에 따른 CNG차량의 성능특성 연구)

  • 김봉석;이영재;고창조
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.42-49
    • /
    • 1996
  • Natural gas is one of the promising alternative fuels for automotive vehicles, because it has lower exhaust emissions and better fuel economy characteristics than those of gasoline, and can be used in conventional gasoline engines without major modifications. In the present study, a conventional gasoline engine was modified to a CNG engine, which can be operated with CNG only, and an engine bench test was performed to calibrate the operating parameters of the engine such as air fuel ratio, spark advance, etc. at various operating conditions. The modified CNG engine, then, was installed on a commercial gasoline vehicle and a vehicle driving test on chassis dynamometer was performed to examine the fuel economy and exhaust emission characteristics. As a result, the prototype CNG vehicle showed lower exhaust emissions and better fuel economy characteristics, but slightly reduced brake horse power, compared to the gasoline vehicle.

  • PDF

Structural and Electrical Properties of Cu(In,Ga)Se2 Solar Modules under Damp Heat and Thermal Cycling Tests

  • Lee, Dong-Won;Kim, Yong-Nam;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.456.2-456.2
    • /
    • 2014
  • Cu(In,Ga)Se2 (CIGS) 화합물은 태양광을 흡수하기에 가장 이상적인 약 1.04 eV의 에너지 금지대 폭과 높은 광흡수계수를 가지고 있으며, $450{\sim}590^{\circ}C$의 고온 공정에도 매우 안정하여 열 경화현상을 거의 보이지 않으므로 박막 태양전지로서 커다란 응용 잠재력을 갖고 있는 광흡수층 재료이다. CIGS 화합물 박막 태양전지의 효율은 연구실에서는 ~20%의 높은 효율을 보고하고 있으며, 모듈급에서도 ~13%의 효율을 보이고 있다. 그러나 CIGS 박막 태양전지를 대면적 또는 양산화에 적용하기 위해서는 20년 이상의 장기적인 수명을 보장할 수 있는 내구성을 갖추어야 한다. 본 연구에서는 CIGS 모듈의 장기적인 신뢰성을 평가하기 위해 CIGS PV 모듈을 대상으로 IEC-61646 규격을 이용하여 고온고습 시험 ($85^{\circ}C$/85% RH, 1000 h) 과 열충격 시험 ($-40^{\circ}C/140^{\circ}C$, 1000 cycles) 이 수행되었고, 두 종류의 가속 스트레스 시험 후에 모듈의 성능 저하에 영향을 미치는 요인들이 연구되었다. 또한, 모듈의 효율 저하의 원인을 규명하기 위해 투명전극 Al-doped ZnO (AZO)와 광흡수층 CIGS를 대상으로 고장분석을 수행하였다. AZO층과 CIGS층의 전기적 특성 분석, 결장상 분석 및 XPS 분석들을 종합하여 CIGS PV 모듈의 성능저하의 원인을 규명하였다.

  • PDF

Analysis of Correlation between Freeze-Thaw Damage on Concrete and Chloride Penetration Acceleration Effect Using Surface Rebound Value (표면반발경도 활용 콘크리트 동해손상과 염분 침투 가속효과의 상관관계 분석)

  • Park, Ji-Sun;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.148-156
    • /
    • 2022
  • Although most domestic concrete structures are simultaneously exposed to freeze-thaw and chloride environments, concrete durability in the field is evaluated by each single action, and the evaluation of chloride-caused damage of concrete requires additional indoor experimental analysis of chloride contents by coring samples from structures in the field. However, in Korea, policies to strengthen facility maintenance, such as 「Special Act on the Safety Control and Maintenance of Establishments」 and 「Framework Act on Sustainable Infrastructure Management」, have been established and implemented since 2018 and facilities subject to safety inspection management by the government and local governments increases, the effective simplification technology for the inspection and diagnosis of concrete structure is needed. Therefore, this study attempted to evaluate the possibility of determining the acceleration chloride penetration of freeze-thaw damaged concrete by using the surface rebound value. For this purpose, concrete specimens already having freeze-thaw damage by exposure to the freeze-thaw acceleration environment were immersed in chloride water. After that, the acceleration relationship of chloride penetration according to freeze-thaw damage was analyzed using the amount of chloride contents in concrete.

Performance Evaluation of the High Durability Asphalt Mixture for Bridge Deck Pavements (고내구성 교면포장 아스팔트 혼합물의 공용성 평가에 관한 연구)

  • Park, Hee-Mun;Choi, Ji-Young;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.51-62
    • /
    • 2007
  • Recently, the pavement distresses in the bridge deck have seriously affected the durability of bridge deck and driver's safety. The existing asphalt materials have the limitations in reducing the pavement distresses of brides deck. To protect the bridge deck and withstand the high deflection, it is necessary to develop the asphalt materials with good fatigue resistance for bridge deck pavement. The asphalt binder combined with SBS and two other admixtures has been developed for improving the resistance to fatigue cracking, productivity, and workability for bridge deck pavement. Based on the various binder test results, the developed binder is found to be PG 70-34 indicating very higher resistance against fatigue cracking. Fatigue testing, wheel tracking testing, and moisture susceptibility testing have been conducted to evaluate the performance of asphalt mixtures developed in this study. Laboratory test results show that the developed asphalt material has three times higher fatigue lives than the typical modified asphalt mixture. Full scale accelerated testing was also performed on the typical asphalt mixture and newly developed asphalt mixture to evaluate the full scale performance of asphalt mixtures. Test results indicate that the length of cracking on the new materials is only 38% of the typical material at the 250,000 load repetitions.

  • PDF

Finite Element Analysis for the Safety Assessment of Take-out Robot (취출로봇의 안전성 평가를 위한 유한요소해석)

  • Hong, Hee-Rok;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1241-1246
    • /
    • 2014
  • Take-out robots used for handling of the plastic parts manufactured with the injection mold are usually the gantry type that consists of long and thin links. In this study, we want to evaluate the safety of the take-out Robot structure through finite element analysis. The take-out Robot is automated robot to transport from one location to another in the molded article. The take-out Robot structure has a 380 kilogram weight, a 1300mm width, a 670.5mm depth and a 670mm height. It confirms the equivalent stress and the deformation of the load and its own weight through weight analysis. It looks for the natural frequency of the take-out robot through modal analysis. It confirms the acceleration, the normal stress and the deformation about the natural frequency of the take-out robot through response analysis. Also It repeats the analysis by changing the structure of the take-out robot, to confirm the results and it is determined whether the safety of the structure. These analysis results are effectively used to reduce the vibration of the take-out robot.