DOI QR코드

DOI QR Code

Decrease of Membrane Degradation in PEMFC by Fucoidan

후코이단에 의한 PEMFC 고분자막의 열화 감소

  • Oh, Sohyung (Department of Chemical Engineering, Sunchon National University) ;
  • Kak, Ahyeon (Department of Chemical Engineering, Sunchon National University) ;
  • Oh, Sungjun (CNL Energy Co) ;
  • Lee, Daewoong (Department of Chemical Engineering, Sunchon National University) ;
  • Na, Il-Chai (CNL Energy Co) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • Received : 2019.10.15
  • Accepted : 2019.12.13
  • Published : 2020.02.01

Abstract

Radical scavenger is used to improve the durability of PEMFC polymer membrane. In this study, we investigated whether fucoidan extracted from seaweed as a radical scavenger prevents electrochemical degradation through Fenton and OCV Holding experiments. Fucoidan has an antioxidant effect, protecting the polymer membrane from hydrogen peroxide and oxygen radicals, reducing the degradation rate to 1/10. Fucoidan has been shown to be more effective than MnO2, which is used as a radical scavenger. In the PEMFC cell, the accelerated durability evaluation method (OCV Holding) showed that fucoidan reduced the hydrogen permeability of the polymer membrane by 12% and enhanced the performance by 29.1% compared to without radical scavenger. And fucoidan was found to be more effective in the cathode side ionomer than the anode side.

PEMFC 고분자막의 내구성을 향상시키기 위해서 Radical 제거제가 사용되고 있다. 본 연구에서는 라디칼 제거제로서 해조류에서 추출한 후코이단이 고분자막의 전기화학적 열화를 방지하는지 Fenton 실험과 가속내구 평가방법(OCV Holding) 실험을 통해 검토하였다. 후코이단은 항산화 효과가 있어 과산화수소와 산소 라디칼로부터 고분자막을 보호해 열화속도를 1/10로 감소시켰다. 후코이단이 라디칼 제거제로 사용되는 MnO2보다 효과적임을 보였다. PEMFC셀에서 OCV Holding 실험한 결과, 후코이단이 고분자막의 수소투과도를 12% 감소시켰고, 성능은 라디칼 제거제가 없을 때 보다 29.1% 감소시켜 PEMFC 셀에서도 라디칼 제거제의 역할을 함을 확인하였다. 그리고 후코이단을 Anode쪽보다 Cathode 쪽 전극 이오노머에 넣은 것이 더 효과적임을 확인하였다.

Keywords

References

  1. Borup, R., Meyers, J., Pivovar B, Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K. and Iwashita, N.,"Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation," Chem. Rev., 107, 3904-51(2007). https://doi.org/10.1021/cr050182l
  2. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
  3. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140, 2872-2877(1993). https://doi.org/10.1149/1.2220925
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127, 127-134(2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48, 1543-1548(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152, A104-A113(2005). https://doi.org/10.1149/1.1830355
  9. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  10. Wilkinson. D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  11. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  12. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  13. Wang, H. Tang, M. and Pan, D. Li., "Ex Situ Investigation of the Proton Exchange Membrane Chemical Decomposition," Int. J. Hydrogen Energy., 33(9), 2283-2288(2008). https://doi.org/10.1016/j.ijhydene.2008.01.052
  14. Kinumoto,T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R. and Takaka, A., "Durability of Perfluorinated Ionomer Membrane Against Hydrogen Peroxide," J. Power Sources, 158(2), 1222-1228(2006). https://doi.org/10.1016/j.jpowsour.2005.10.043
  15. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006).
  16. Pearman, B. P., Mohajeri, N., Slattery, D. K., Hampton, M. D., Seal, S. and Cullen, D. A., "The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes," Polym. Degrad. Stab., 98(9),1766-1772 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.05.025
  17. Hao, J., Jiang, Y., Gao, X., Xie, F., Shao, Z. and Yi, B., "Degradation Reduction of Polybenzimidazole Membrane Blended with $CeO_2$ as a Regenerative Free Radical Scavenger," J. Membr. Sci., 522(15), 23-30(2017). https://doi.org/10.1016/j.memsci.2016.09.010
  18. Zhu, H., Pei, S., Tang, J., Li, H., Wang, L., Yuan, W. and Zhang, Y., "Enhanced Chemical Durability of Perfluorosulfonic Acid Membranes Through Incorporation of Terephthalic Acid as Radical Scavenger," J. Membr. Sci., 432, 66-72(2013). https://doi.org/10.1016/j.memsci.2012.12.050
  19. Cha, S. H., Ahn, M. W., Lee, J. S., Kim, Y. S., Kim, D. U., Byun, T. G. and Park, K. P., "The Effect of Fcoidan Molecula Weight on Cosmetic Functionl," Korean Chem. Eng. Res., 50(4), 604-609(2012). https://doi.org/10.9713/kcer.2012.50.4.604
  20. Tatiana, N. Z., Nataliiya, M. S., Irina, B. P., Vladimir, V. I., Andrey, S. S., Elena, V. S. and Lyudmila, A. E., "A New Proce Dure for the Separation of Water-Soluble Polysaccharides from- Brown Seaweeds," Carbohydr. Res., 322, 32-39(1999). https://doi.org/10.1016/S0008-6215(99)00206-2
  21. Fortun, A., Khalil, A., Gagne, D., Douziech, N., Kuntz, C. and Dupuis, G., "Monocytes Influence the Fate of T Cells Challenged with Oxidised Low Density Lipoproteins Towards Apoptosis or MHC-Restricted Proliferation," Atherosclerosis, 156, 11-21(2001). https://doi.org/10.1016/S0021-9150(00)00575-X
  22. Collis, S., Fisher. A. M., Tapon-Bretaudiere, J., Boisson, C., Durand, P. and Jozefonvicz, J., "Anticoagulant Properties of a Fucoidan Fraction," Thtombosis Research, 64(2), 143-154(1991). https://doi.org/10.1016/0049-3848(91)90114-C
  23. Mauray, S., Raucourt, E., Talbot, J., Jozefowicz, M. and Fis cher, A., "Mechanism of Factor IXa Inhibition by Antithrombin in the Presence of Unfractionated and Low Molecular Weight Heparins and Fucoidan," Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1387(1-2), 184-194(1998). https://doi.org/10.1016/S0167-4838(98)00120-4
  24. Saito, A., Yoneda, M., Yokohama, S., Okada, M., Haneda, M. and Nakamura, K., "Fucoidan Prevents Concanavalian A-Induced Liver Injury Through Induction of Endogenous 1L-10 in Mice," Hepatology Research, 35(3), 190-198(2006). https://doi.org/10.1016/j.hepres.2006.03.012
  25. Yao, Y., Liu, J., Liu, W., Zhao, M., Wu, B., Gu, J. and Zou, Z., "Vitamin E Assisted Polymer Electrolyte Fuel Cells," Energy Environ. Sci., 7, 3362-3370(2014). https://doi.org/10.1039/C4EE01774A
  26. Ohguri, N., Nosaka, A. Y. and Nosaka, Y., "Detection of OH Radicals as the Effect of Pt Particles in the Membrane of Polymer Electrolyte Fuel Cells," J. Power Sources, 195, 4647(2010). https://doi.org/10.1016/j.jpowsour.2010.02.010
  27. Liu, W. and Zuckerbrod, D., "In Situ Detection of Hydrogen Peroxide in PEM Fuel Cells," J. Electrochem. Soc., 152, A1165(2005). https://doi.org/10.1149/1.1904988
  28. Kundu, S., Fowler, M. W., Simon, L. Abouatallah, C. R. and Beydokhti, N., "Degradation Analysis and Modeling of Reinforced Catalyst Coated Membranes Operated Under OCV Conditions," J. Power Sources, 183, 619 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.074
  29. Zhang, L. and Mukerjee, S., "Investigation of Durability Issues of Selected Nonfluorinated Proton Exchange Membranes for Fuel Cell Application," J. Electrochem. Soc., 153, A1062(2006). https://doi.org/10.1149/1.2180715