• Title/Summary/Keyword: 가변 전력 분배기

Search Result 9, Processing Time 0.024 seconds

The variable power divider circuit to use the ring-hybrid coupler (링-하이브리드 커플러를 이용한 가변 전력 분배기 회로)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • This paper introduces a new variable power divider circuit with an arbitrary power division ratio ranging from $1:{\infty}$ to ${\infty}:1$. The proposed power divider circuit consists of one branch-line coupler to be a good input matching characteristic, two variable phase shifters with 90-degree phase variation to be connected two output paths of the branch-line coupler, and one ring-hybrid coupler to combine output signals of two variable phase shifter. The power division ratio between the two output ports of the proposed power divider can be easily controlled by the phase variation of the two phase shifter. The proposed power divider circuit fabricates on laminated RF-35 (h = 20 mil, er=3.5; Taconic) with a center frequency of 2 GHz. The power division ratio of the fabricated prototype varies from about 1:1000 to 5000000:1, with an input reflection characteristic(S11) of below -20 dB, an insertion loss of about -1.0 dB, and an isolation characteristic of below -17 dB between two output ports in the range 1.9-2.1 GHz.

A variable power divider circuit using the combine characteristic of the branchline coupler (브랜치라인 커플러 결합을 이용한 가변 전력 분배기 회로)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.245-251
    • /
    • 2017
  • The proposed variable pawer divider in this paper is composed of one equal power 2-way Wilkinson power divider, two variable phase shifters with 90-degree phase variation to be connected two output paths of the 2-way power divider, and one branchline coupler to combine output signals of two variable phase shifter. The proposed variable power divider can theoretically have an arbitrary power division ratio ranging from ${\infty}:1$ to ${\infty}:1$ due to 90-degrees phase variation of two phase shifter. The proposed power divider circuit fabricates on laminated TLX-9(h=20 mil, er=2.5; Taconic) with a center frequency of 1.7 GHz. The power division ratio of the fabricated prototype varies from about 1:100 to 200:1, with an input reflection characteristic(S11) of below -16 dB, an insertion loss of about -1.0 dB, and an isolation characteristic of below -17 dB between two output ports in the range 1.65-1.75 GHz.

Gysel 3:1 variable power divider using the dual characteristic impedance transmission line (이중 특성 임피던스 선로를 이용한 Gysel 3:1 가변 전력분배기)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1409-1415
    • /
    • 2021
  • The Gysel divider has the advantage of easily setting the resistor in the circuit. If the line impedance in the Gysel divider is set differently, the input signal can be distributed to the two output ports at various distribution ratios. This paper proposes the Gysel divider that can change the power distribution to 1:3 or 3:1 by changing the line impedance. The impedance change of the line can be implemented by placing a floating copper plate on the bottom of the microstrip-line. When the floating copper plate and the ground plane are connected, the line operates as the microstrip-line, and when the floating copper plate and the ground plane are disconnected, the line operates as the coplanar-line. The proposed Gysel divider was fabricated at the center frequency of 1.5GHz. The fabricated 3:1 Gysel divider has a stable value S11 of below -17dB, S21/S31 of 4.8±0.2dB, S21(to high output port) of -1.39±0.12dB and S31(to low output port) of -6.15±0.08dB over 1.3~1.7GHz.

An Unequal Power Divider with Adjustable Dividing Ratio (가변 분배 비율 비대칭 전력 분배기)

  • Lim, Jong-Sik;Oh, Seong-Min;Koo, Jae-Jin;Jeong, Yong-Chae;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.478-485
    • /
    • 2007
  • In this paper, an unequal 1:N Wilkinson power divider with adjustable dividing ratio is proposed. The proposed unequal power divider is composed of basic Wilkinson structure. It consists of rectangular-shaped defected ground structure (DGS), isolated island pattern in DGS, and varactor diodes of which capacitance depends on bias voltage. The characteristic impedance value of microstrip line having DGS goes up and down by controlling bias voltage for diodes, and consequently the power dividing ratio(N) is adjusted. The obtained N from measurement is $2.59{\sim}10.4$ which mean the proposed divider has adjustable unequal dividing ratio.

The circuit design to be power transmission or power distribution using the dual characteristic impedance transmission line (이중 특성 임피던스 전송 선로를 이용한 전력 전송 또는 전력 분배가 가능한 회로 설계)

  • Park, Unghee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2339-2344
    • /
    • 2014
  • of a microstrip transmission line, this transmission line can operate as the microstrip line or the coplanar line according to open or short connection between the ungrounded copper plane and grounded plane on the base plane. Two different type operation of the transmission line means that one transmission line can have two different characteristic impedances. This paper proposes and fabricates the circuit to be operated 2-ports power transmission line or 2-way power divider with the stable input matching characteristic by using this dual-impedance transmission line. The proposed circuit operates 2-ports power transmission line in case of the coplanar line or 2-way power divider line in case of the microstrip line. The fabricated circuit shows $S_{21}$ > -0.2 dB and $S_{11}$ < -15 dB above 700 MHz when the circuit operates 2-ports power transmission line. And, it is $S_{21}$ > -3.8 dB, $S_{11}$ < -10 dB and $S_{21}/S_{31}$ < ${\pm}0.3dB$ above 700 MHz when the circuit operates 2-way power divider.

Power Flow Control and Optimal Fuel Efficiency Control for a Series Hybrid Electric Vehicle (직렬형 하이브리드 전기 자동차의 최적 연비 제어 및 전력제어)

  • Yoo, Hyun-Jae;Sul, Seung-Ki;Kim, Sang-Min;Park, Yong-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.75-77
    • /
    • 2007
  • 본 논문에서는 엔진, 발전기, 견인 전동기, 배터리, 전력 변환기로 구성된 직렬형 하이브리드 전기 자동차의 최적 효율 운전 및 통합 전력제어에 관해 논의한다. 제안된 시스템의 엔진은 최적 효율 운전을 위해 부하에 따라 가변속(Variable Speed) 운전되며, 속도를 가변하여도 필요한 전력을 순시적으로 제어할 수 있다. 또한 자동차가 요구하는 다양하고 순시적인 전력의 변동에 대응할 뿐만 아니라 엔진의 연료 효율 및 배터리의 수명을 고려하여 엔진과 배터리의 전력을 적절히 분배하여 공급할 수 있는 통합 전력제어 방법에 관해서도 논의한다. 제안된 통합 전력제어 알고리즘의 유용성은 컴퓨터 시뮬레이션을 통해 검증하였다.

  • PDF

1.8-GHz Six-Port-Based Impedance Modulator Using CMOS Technology (CMOS 공정을 이용한 1.8 GHz 6-포트 기반의 임피던스 변조기)

  • Kim, Jinhyun;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.383-388
    • /
    • 2018
  • This paper presents a 1.8 GHz six-port-based impedance modulator using CMOS technology, which can select an arbitrary load impedance with switch control. The proposed 1.8-GHz impedance modulator comprises a Wilkinson power divider, three quadrature hybrid couplers, and four SP3T switches for each load impedance selection. The measured insertion loss of -13 dB and the input/output return losses of >10 dB are achieved in the range of 1.4~2.2 GHz. The low drop output regulator for a stable 3.3 V DC power and the serial peripheral interface(SPI) for an easy digital control are integrated. The chip size, including the pads, is $1.7{\times}1.8mm^2$.

A Selective Wireless Power Transfer Architecture Using Reconfigurable Multiport Amplifier (재구성 다중포트 전력증폭기를 이용한 선택적 무선 전력 전송 구조)

  • Park, Seung Pyo;Choi, Seung Bum;Lee, Seung Min;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.521-524
    • /
    • 2015
  • This letter presents a selective wireless power transfer architecture using a reconfigurable multi-port amplifier. The proposed wireless power transfer architecture is composed of a phase shifter part controlled by FPGA, two class-E power amplifiers, a four-port power combiner and two coil loads. Depending on the phase control of FPGA, the power ratio of outputs at the two coil loads becomes 1:1, 2:0 and 0:2. The manufactured system has delivered 1W DC power to loads at 125 kHz. The total DC-to-DC conversion efficiency shows more than 40 % including PA efficiency of 79 %.

Accuracy Improvement of FBG Temperature Sensor System (광섬유격자 온도센서의 정밀도 개선)

  • Lee, Hyun-Wook;Song, Min-Ho;Lee, June-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.216-222
    • /
    • 2006
  • We propose the use of the Gaussian-curve fitting algorithm for the improvement of measurement accuracy in wavelengthscanned Fabry-Perot filter based demodulation systems. The peak locations of FBG sensors were calculated from the fitted curves rather than from distorted PD profiles, resulting in much better measurement accuracy than that of the highest-peak search algorithm. Also, the algorithm was proved to minimize measurement uncertainty of spectrally-distorted grating sensors. From our experimental results, a temperature resolution as small as ${\sim}0.3^{\circ}C$ was readily achieved by use of the Gaussian-curve fitting algorithm whereas the highest-peak search algorithm gave a temperature resolution larger than ${\sim}4^{\circ}C$.