• Title/Summary/Keyword: 가변성

Search Result 1,789, Processing Time 0.031 seconds

Techniques for Designing Logic and Workflow Variability in Software Component Development (소프트웨어 컴포넌트 개발을 위한 논리 및 워크플로우 가변성 설계 기법)

  • 정광선;김수동
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1027-1042
    • /
    • 2004
  • A Software Component is a module that is reused among a lot of projects, systems, and companies rather than a single application. Components can be reused in various systems if they provide not only the common functionalities required in many applications but also the diverse aspects to be customized for being suitable for customers' demands. From the development phase, components should be designed and developed considering the variable aspects they have for convenient customization. Easily customized components can be frequently reused in lots of applications. In the literature, there are some modeling and customizing techniques. But they suggested only conceptual or basic methods based on Object-Oriented. And the practical instructions for reusing component were not provided sufficiently. Moreover, there are few techniques that consider the proper variability types components have. Thus, those techniques are not appropriate for applying to black box component completely developed and released. In this paper, we classify variabilities that components have in functional aspect into two categories. The one is logic variability, and the other is workflow variability. For each classified variability, we propose the three kind of modeling techniques, which are selection, plug in and externalization. Also detailed instructions for practical design and application are provided.

Study on the Techniques in Component Workflow Variability Implementation based on the Banking Framework (금융업무프레임워크에서 컴포넌트 워크플로우 가변성연구)

  • Choi Sung
    • The KIPS Transactions:PartD
    • /
    • v.12D no.7 s.103
    • /
    • pp.1023-1030
    • /
    • 2005
  • CBD(Component Based Development) can make use of component of block unit that is implementation beforehand and shorten software development cost and time. Also, component can reduce complexity for the large application development because it can hide detail part of internal and offer interface. Common requirement of family in the enterprise framework environment can express workflow, but it is very difficult that express special workflow in single component on various family member's requirement. Therefore, necessity about workflow variability management between component for family member and implementation method had been required constantly. This treatise presents implementation techniques for component workflow variability in enterprise framework under Banking Loan Presented component workflow variability implementation techniques supposes that commonness business workflow that family can use in enterprise workflow was created already in component, and improve workflow's extensity between component by worikflow composition between special component and techniques for practice to various family member.

A Method to Customize the Variability of EJB-Based Components (EJB 기반 컴포넌트의 가변성 맞춤화 기법)

  • Min Hyun-Gi;Kim Sung-Ahn;Lee Jin-Yeal;Kim Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.6
    • /
    • pp.539-549
    • /
    • 2006
  • Component-Based Development (CBD) has emerged as a new effective technology that reduces development cost and time-to-market by assembling reusable components in developing software. The degree of conformance to standards and common features in a domain largely determines the reusability of components. In addition, variability within commonality should also be modeled and customization mechanism for the variability should be designed into components. Enterprise JavaBeans (EJB) is considered a most suitable environment for implementing components. However. the reusability of EJB is limited because EJB does not have built-in variability design mechanisms. In this paper, we present efficient variability design techniques for implementing components in EJB. We propose a method to customize the variability of EJB-based components by applying three variability design mechanisms; selection, plug-in, and external profile. And we elaborate the suitable situations where each variability design mechanism can be applied, and conduct a technical comparison to other approaches available.

Formal Definition and Consistency Analysis of Feature-Oriented Product Line Analysis Model (특성 지향의 제품계열분석 모델의 정형적 정의와 일관성 분석)

  • Lee Kwanwoo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • Product line analysis is an activity for analyzing requirements, their relationships, and constraints in a product line before engineering product line assets (e.g., architectures and components). A feature-oriented commonality and variability analysis (called feature modeling) has been considered an essential part of product line analysis. Commonality and variability analysis, although critical, is not sufficient to develop reusable and adaptable product line assets. Dependencies among features and feature binding time also have significant influences on the design of product line assets. In this paper. we propose a feature-oriented product line analysis model that extends the existing feature model in terms of three aspects (i.e., feature commonality and variability, feature dependency, and feature binding time). To validate the consistency among the three aspects we formally define the feature-oriented product line analysis model and provide rules for checking consistency.

Study on Radiometric Variability of the Sonoran Desert for Vicarious Calibration of Satellite Sensors (위성센서 대리 검보정을 위한 소노란 사막의 복사 가변성 연구)

  • Kim, Wonkook;Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.209-218
    • /
    • 2013
  • The Sonoran Desert, which is located in North America, has been frequently used for vicarious calibration of many optical sensors in satellites. Although the desert area has good conditions for vicarious calibration (e.g. high reflectance, little vegetation, large area, low precipitation), its adjacency to the sea and large variability in atmospheric water vapor are the disadvantages for vicarious calibration. For vicarious calibration using top-of-atmospheric (TOA) reflectance, the atmospheric variability brings about degraded precision in vicarious calibration results. In this paper, the location with the smallest radiometric variability in TOA reflectance is sought by using 12-year Landsat 5 data, and corrected the TOA reflectance for bidirectional reflectance distribution function (BRDF) which is another major source of variability in TOA reflectance. Experiments show that the mid-western part of the Sonoran Desert has the smallest variability collectively for visible and near-infrared bands, and the variability from the sunarget-sensor geometry can be reduced by the BRDF correction for the visible bands, but not sufficiently for the infrared bands.

Development of a Tool for Modeling the Variabilities of Business Process (비즈니스 프로세스의 가변성 모델링 지원 도구 개발)

  • Hong, Min-Woo;Moon, Mi-Kyeong;Yeom, Keun-Hyuk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.7
    • /
    • pp.733-737
    • /
    • 2008
  • Business process modeling is to represent the business activities in a graphical notation that enterprises use to achieve their customer's requirements. Nowadays, lots of requirements are changed quickly and variously. Therefore, business process models should provide the means which can prepare for changes by analyzing (pointing) elements of business process that are likely to alter. In this paper, we propose a business process family model (BPFM) which represents the commonalities and the variabilities of a set of business processes. In addition, we propose the process which develops the tools for BPFM based on Eclipse Plug-In Graphical Modeling Framework (GMF). The variabilities of Business Process are modeled by using expanded model elements of UML2.0 activity diagram.

A Design and Implementation of Mobile Variability based on Android (안드로이드 기반 모바일 가변성 설계 및 구현)

  • Kim, Chul-Jin;Cho, Eun-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2338-2346
    • /
    • 2012
  • According to the size of mobile applications has been expanded, the coupling of among mobile applications or servers also will be growing. The growth of mobile application's size means that predicting design for variability should be involved. If mobile application's change is occurred, application should be reinstalled totally. However this reinstallation can raise side-effects in case of high-coupling applications. Therefore, this paper proposes a technique of designing variability for mobile applications in android platform. Proposed technique is separated into selection technique and plug-in technique.

A Variability Design Technique based on Component Architecture for Dynamic Component Integration (컴포넌트 아키텍쳐 기반의 동적 컴포넌트 조합을 위한 가변성 설계 기법)

  • Kim Chul Jin;Cho Eun Sook
    • Journal of Internet Computing and Services
    • /
    • v.6 no.2
    • /
    • pp.13-24
    • /
    • 2005
  • Software development by component integration is the mainstream for time-to-market and is the solution for overcoming the short lifecycle of software. Therefore, the effective techniques for component integration have been working. However, the systematic and practical technique has not been proposed. One of main issues for component integration is how to specify integration and the component architecture for operating the specification, in this paper, we propose a workflow variability design technique for component integration, This technique focuses on designing to a connection contract based on the component architecture. The connection contract is designed to use the provided interface of component and the architecture can assemble and customize components by the connection contract dynamically.

  • PDF

Managing and Modeling Variability of UML Based FORM Architectures Through Feature-Architecture Mapping (휘처-아키텍처 대응을 통한 UML 기반 FORM 아키텍처의 가변성 모델링 및 관리)

  • Lee, Kwan-Woo
    • The KIPS Transactions:PartD
    • /
    • v.19D no.1
    • /
    • pp.81-94
    • /
    • 2012
  • FORM(Feature-Oriented Reuse Method) is one of representative product line engineering methods. The essence of FORM is the FORM architecture models, which can be reused in the development of multiple products of a software product line. The FORM architecture models, however, have the following problems when applied in practice. First, they are not standardized models like UML(Unified Modeling Language) and therefore they can be constructed only through a specific modeling tool. Second, they do not represent architectural variability explicitly. Instead their variability is only managed through a mapping from a feature model. To address these two problems, we developed at first a method for representing the FORM architecture models using UML, which enables the FORM architecture models to be constructed through various available UML modeling tools. Also, we developed an effective method for representing as well as managing the variability of the FORM architecture models through a mapping from a feature model.

Determination Process of Drift Capacity for Seismic Performance Evaluation of Steel Tall Buildings (초고층 철골 건축물의 내진성능평가를 위한 Drift Capacity 산정 프로세스)

  • Min, Ji Youn;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.481-490
    • /
    • 2006
  • The actual performance of a building during an earthquake depends on many factors. The prediction of the seismic performance of a new or existing structure is complex, due not only to the large number of factors that need to be considered and the complexity of the seismic response, but also due to the large inherent uncertainties and randomness associated with making these predictions. A central issue of this research is the proper treatment and incorporation of these uncertainties and randomness in the evaluation of structural capacity and response has been adopted in the seismic performance evaluation of steel tall buildings to account for the uncertainties and randomness in seismic demand and capacities in a consistent manner. The basic framework for reliability-based seismic performance evaluation and the key factors for statistical studies were summarized. A total of 36 target structures that represent typical tall steel buildings based on national building code (KBC-2005) were designed for the statistical studies of demand factor s and capacity factors. The incremental dynamic analysis (IDA) approach was examined through the simple steel moment frame building in determination of global drift capacity.