• Title/Summary/Keyword: 가로세로비

Search Result 40, Processing Time 0.033 seconds

The Effect of Aspect Ratio on the Aerodynamic Characteristics of an Insect-based Flapping Wing (곤충 모방형 플래핑 날개의 공력특성에 관한 가로세로비 효과)

  • Han, Jong-Seob;Chang, Jo-Won;Jeon, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.662-669
    • /
    • 2012
  • The effect of aspect ratio (AR) on the aerodynamic characteristics of a flapping wing was examined to analyze the design parameters of an insect-based MAV. The experimental model constructed with 4-bar linkages was operated in a water tank with the condition of a low Reynolds number. A water-proof micro-force load cell was fabricated and installed at the root of the wing which is made of a plexiglas. The wing shapes were based on the planform of a fruit fly wing. The ARs selected were 1.87, 3.74 and 7.48 and the Reynolds number was fixed at $10^4$. For AR=1.87 and 3.74, distinct lift peaks which indicate unsteady effects such as 'wake-capture' were observed at the moment of the start of the wing-stroke. However, for AR=7.48, no unsteady effects were observed. These phenomena were also observed in the delayed rotation case. The results indicate that a larger AR provides better aerodynamic performance for the insect-based flapping wing which can be applied in MAV designs.

Aerodynamic Effect on the Flow Field under the Wing with Varying Aspect Ratio (가로세로비에 따른 날개 하부 유동장의 공기역학적 영향)

  • Cho, Cheolyoung;Park, Jongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • In this paper, aerodynamic effects on the flow field under the wing with varying aspect ratio were investigated by measuring pressures on the lower surface of wing and analysing velocity components using Particle Image Velocimetry at Reynolds numbers of $1.384{\times}10^5$ and $2.306{\times}10^5$. In case of aspect ratio 4.8 which keeps the wing tip at a distance of 80% chord length from the pylon, the vortex from the wing tip influenced the flow field under the wing by reducing static pressures on the lower surface and increasing the velocity in proximity of the wing tip. Throughout the results, it is observed that aerodynamic effects of wing tip on the flow field around pylon under wing become insignificant as the aspect ratio increases.

Aerodynamic Characteristics of a Variable Span Wing Flying Inside a Channel I (Effects of Wing Aspect Ratio and Guideway) (채널 내를 비행하는 가변스팬 날개 공력특성 I (가로세로비 및 안내로 영향))

  • Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.11-16
    • /
    • 2016
  • In this paper, an experimental study on the aerodynamic characteristics of a variable span wing flying inside a channel guideway is accomplished using wind tunnel testing. A variable span wing with a NACA 0012 airfoil section was fabricated and actuated using a linear servo motor. The aerodynamic effects of 1) wing aspect ratio, 2) ground effect, and 3) the gap between the wingtip and the wing fence were investigated. It was found that both ground effect and wing fence gap increased lift. Also, the wing fence gap does not significantly affect drag. Therefore, it was found that a variable span mechanism can be used as an effective high lift device when flap use is limited.

A Study on Trim Flight Condition for a Korean Traditional Bangpae Kite with Low Aspect Ratio (작은 가로세로비를 가진 전통 방패연의 평형 비행 조건 연구)

  • Kang, Chi-Hang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.871-876
    • /
    • 2011
  • In this paper, the equilibrium flight conditions of a Korean Traditional Bangpae Kite with low aspect ratio were analyzed by it's aerodynamic data of wind tunnel test. The data of aerodynamic forces and center of pressure of the Kite were used to calculate the relative length of bridles to satisfy the condition of settling the kite to the static equilibrium steady state between ${\theta}=30^{\circ}{\sim}60^{\circ}$. From this equilibrium flight performance analysis, we obtained ($0.88{\pm}0.02$)c of the rear bridle length corresponding to 0.88c of fixed front bridle length. These results were exact agreement with the relative bridle lengths by Korean classical method.

A Study on the Center Hole of Korean Traditional Kite with Aspect Ratio 1:1.5 (가로세로비 1:1.5를 가진 한국 전통 지연의 방구멍에 대한 연구)

  • Sah, Jong-Youb
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.243-254
    • /
    • 2020
  • Korean traditional kite has the unusual shape of the elongated rectangle with the center hole. The aerodynamic forces are numerically computed on Korean traditional kite with aspect ratio 1:1.5 by using FLUENT software. Simulating the flight of the kite with various diameters of the center hole, the present study has investigated the role of the center hole as well as the effect of diameter of the center hole. The center hole plays a role in relieving the sudden increase of tension associated with fast rewinding of the kite thread in kite fighting, thereby enabling faster rewinding of the kite thread. The proper diameter of the center hole is 1/3 of the width.

An Experimental Study of the Infrared Signal Characteristics on the S-Nozzle Plume of the Micro Turbojet Engine (마이크로 터보제트엔진 S형상 배기노즐 플룸의 적외선 신호 특성 실험연구)

  • Kim, Sunmi;Lee, Jeonseok;Choi, Seongman;Myoung, Rho-Shin;Kim, Woncheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.583-586
    • /
    • 2017
  • Infrared signal measurement are conducted from a micro-turbo jet engine with different nozzle configurations. The conventional cone type, a S-shaped type with aspect ratio 5.2 and five rectangular type nozzle with different aspect ratios are used for this experiment work. The result show that infrared signal from the exhaust gas decrease as the aspect ratio increase. In case of S-shaped nozzle, the maximum infrared signal is reduced about 28.4% when compared of rectangular nozzle with aspect ratio 5(AR5).

  • PDF

Parametric Study on Wing Design of Insect-mimicking Aerial Vehicle with Biplane Configuration (겹 날개를 사용하는 곤충 모방 비행체의 날개 형상에 대한 파라메트릭 연구)

  • Park, Heetae;Kim, Dongmin;Mo, Hyemin;Kim, Lamsu;Lee, Byoungju;Kim, Inrae;Kim, Seungkeun;Ryi, Jaeha;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.712-722
    • /
    • 2018
  • This paper conducts parametric studies on flapping wing design, one of the most important design parameters of insect-mimicking aerial vehicles. Experimental study on wing shape was done through comparison and analysis of thrust, pitching moment, power consumption, and thrust-to-power ratio. A two-axis balance and hall sensor measure force and moment, and flapping frequency, respectively. Wing configuration is biplane configuration which can develop clap and fling effect. A reference wing shape is a simplified dragonfly's wing and studies on aspect ratio and wing area were implemented. As a result, thrust, pitching moment, and power consumption tend to increase as aspect ratio and area increase. Also, it is found that the flapping mechanism was not normally operated when the main wing has an aspect ratio or area more than each certain value. Finally, the wing shape is determined by comparing thrust-to-power ratio of all wings satisfying the required minimum thrust. However, the stability is not secured due to moment generated by disaccord between thrust line and center of gravity. To cope with this, aerodynamic dampers are used at the top and bottom of the fuselage; then, indoor flight test was attempted for indirect performance verification of the parametric study of the main wing.

Nonlinear Static Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects (큰 가로세로비를 가지는 날개의 대변형 효과를 고려한 비선형 정적 공탄성 해석)

  • Yu, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.31-36
    • /
    • 2006
  • In this study, nonlinear static aeroelastic analysis system for a high-aspect-ratio wing are developed using the transonic small disturbance (TSD) and large deflection beam theory and validated. For the coupling between fluid and structure, the transformation of displacement from the structural mesh to aerodynamic one is performed by the shape function of the beam finite element and the inverse transformation of force by work equivalent load concept. Also, for the static aeroelastic analysis of the wing the use of TSD aerodynamics are justified. The validation of the system includes one of the efficient transformation methods of force and displacement.

Experimental Study of a Micro Turbo Jet Engine Performance and IR Signal with Nozzle Configuration (배기노즐 형상변화에 따른 마이크로 터보제트 엔진의 성능 및 적외선신호 실험연구)

  • Park, Gyusang;Kim, Sunmi;Choi, Seongman;Myoung, Rho-Shin;Kim, Woncheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • Micro turbojet engine test and infrared signal measurement were conducted to understand the characteristics of the engine performance and infrared signal with the variants of the exhaust nozzle configuration. A cone type nozzle and five rectangle type nozzles which has aspect ratio from one to five were used for the experimental work. The results show that there are not much difference between cone and rectangle nozzles of the thrust and specific fuel consumption. However infrared signal from exhaust gas become smaller as increasing aspect ratio.

Development of an Automated Aero-Structure Interaction System for Multidisciplinary Design Optimization for the Large AR Aircraft Wing (가로세로비가 큰 항공기 날개의 다분야 통합 최적설계를 위한 자동화 공력-구조 연계 시스템 개발)

  • Jo, Dae-Sik;Yoo, Jae-Hoon;Joh, Chang-Yeol;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.716-726
    • /
    • 2010
  • In this research, design optimization of an aircraft wing has been performed using the fully automated Multidisciplinary Design Optimization (MDO) framework, which integrates aerodynamic and structural analysis considering nonlinear structural behavior. A computational fluid dynamics (CFD) mesh is generated automatically from parametric modeling using CATIA and Gambit, followed by an automatic flow analysis using FLUENT. A computational structure mechanics (CSM) mesh is generated automatically by the parametric method of the CATIA and visual basic script of NASTRAN-FX. The structure is analyzed by ABAQUS. Interaction between CFD and CSM is performed by a fully automated system. The Response Surface Method (RSM) is applied for optimization, helping to achieve the global optimum. The optimization design result demonstrates successful application of the fully automated MDO framework.