• Title/Summary/Keyword: [noise]

Search Result 32,292, Processing Time 0.044 seconds

The Reduction of Tire Pattern Noise Using Time-frequency Transform (시변주파수 분석을 이용한 저소음 타이어 설계)

  • Hwang, S.W.;Bang, M.M.;Rho, K.H.;Kim, S.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.627-633
    • /
    • 2006
  • The tire is considered as one of the important noise sources having an influence on vehicle's performance. The Pattern noise of a tire is the transmission sound of airborne noise. On smooth asphalt road, Pattern noise is amplified with the velocity. In recent, the study on the reduction of Pattern noise is energetically processed. Pattern noise is strongly related with pitch sequence. To reduce the pattern noise, tire's designer has to randomize the sequence of pitch. The FFT is a traditional method to evaluate the level of the randomization of the pitch sequence, but gives no information on time-varying, instantaneous frequency. In the study, we found that Time-Frequency transform is a useful method to non-stationary signal such as tire noise.

Noise Control for 4,500 TED Container Carrier (4,500 TEU 컨테이너 운반선의 소음 제어)

  • 김동해;임도형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1313-1316
    • /
    • 2001
  • Generally, container carrier has larger engine than other commercial vessels and the engine casing is located in accommodation space. Therefore, the noise levels of cabins and engine room could be exceeded the specified noise limits and might be an annoyance to crews, and which can result in poor ship quality. Main subject of this study is to predict noise levels of the 4,500 TED container carrier by statistical energy analysis method in order to comply with contracted noise limits and to compare with the measured values. Additionally, through the contribution analysis of noise sources to each cabins, and appropriate countermeasures are proposed and the reduction effect of each noise control measure is studied by the analysis method. This study will contribute to reduce the noise levels of similar vessel.

  • PDF

A Study on Tire Fluid-Structure Interaction Noise (Tire Fluid-Structure Interaction Noise 에 관한 연구)

  • Kim, Gi-Jeon;Bae, Chul-Yong;Lee, Dong-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.204-209
    • /
    • 2004
  • Recently, the various performances of vehicle are rapidly improved. Therefore tire noise is recognized as important noise source because vehicle noise is considerably reduced. This study is performed for the control of the cavity resonance noise that is structure-borne noise, due to fluid(air)-structure interaction. For this investigation, FRF analysis has been carried out using FEM and we found an important factor affecting cavity resonance. The effect of this factor is confirmed by objective noise test. We confirmed that the result of FRF analysis and objective noise test is that the structure control of tire sidewall can reduce cavity resonance noise due to fluid-structure interaction

  • PDF

A Study on the Reduction of Structure-borne Noise in a Train (철도차량 구조기인 소음의 저감에 관한 연구)

  • Woo, Kwan-Je;Kim, Seock-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.519-523
    • /
    • 2008
  • Inside noise levels of running train is the summation of air borne noise and structure-borne noise. In this paper, structure-borne noise, which is known to dominate inside noise level in open field, is investigated. Structure borne noise is analyzed in terms of vibration sources, transmission path and noise generating part so as to reduce inside noise levels.

The transition of dominant noise source for different CMOS process with Cgd consideration (Cgd 성분을 포함한 공정별 주요 잡음원 천이 과정 연구)

  • Koo, Minsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.682-685
    • /
    • 2020
  • In this paper, we analyze the dominant noise source of conventional inductively degenerated common-source (CS) cascode low noise amplifier (LNA) when width and gate length of stacked transistors vary. Analytical MOSFET and its noise model are used to estimate the contributions of noise sources. All parameters are based on measured data of 60nm, 90nm and 130nm CMOS devices. Based on the noise analysis for different frequencies and device parameters including process nodes, the dominant noise source can be analyzed to optimize noise figure on the configuration. We verified analytically that the intuctively degenerated CS topology can not sustain its benefits in noise above a certain operation frequency of LNA over different process nodes.

A Study on the Standardization Model of Noise Map (소음오염도의 지도표현 표준화 모델)

  • 조기호
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.410-422
    • /
    • 2000
  • This paper proposes a model of standardized noise map in korea, The standardization of noise map is accomplished by standardizing the way of map description and by applying international noise mapping criteria to Korean environment. The proposed model can be an useful star or the production of national standardized noise map in Korea.

  • PDF

Perception of amplitude-modulated noise from wind turbines (풍력발전기 소음의 진폭변조에 대한 예측 및 인지 가능성 고찰)

  • Lee, Seunghoon;Kim, Hogeon;Kim, Kyutae;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.180.1-180.1
    • /
    • 2010
  • Wind turbine noise is generally lower than that from other environmental noise sources such as road and railway noise. Nevertheless, some residents living more than 1km away from wind turbines have claimed that they suffer sleep disturbance due to wind turbine noise. Several researchers have maintained that residents near a wind farm may perceive large amplitude modulation of wind turbine noise at night, and this amplitude modulation is the main cause of the noise annoyance. However, to date only few studies exist on the prediction of the amplitude modulation of wind turbine noise. Thus, this study predicts amplitude modulated noise generated from a generic 2.5MW wind turbine. Semi-empirical noise models are employed to predict the modulation depth and the overall sound pressure level of the wind turbine noise. The result shows that the amplitude modulation is observed regardless of atmospheric stability, but the modulation depth in a stable atmosphere is 1~3dB higher than that in an unstable atmosphere near the plane of rotation where the blades move downward. Moreover, using the result of the noise prediction, this study estimates the maximum perceptible distance of the wind turbine noise cause by amplitude modulation. The result indicates that the wind turbine noise can be perceived at a distance of up to 1600m in the range of about 30~60 degree from the on axis in a extremely low background noise environment.

  • PDF

A study on Traffic Noise control by the Environmental facilities around Roadway (도로연변 환경시설에 의한 교통소음 저감방안에 관한 연구)

  • Sul Jeung Min;Chung Yong
    • Journal of environmental and Sanitary engineering
    • /
    • v.3 no.2 s.5
    • /
    • pp.43-60
    • /
    • 1988
  • This study was carried out to determine traffic noise level and analyze noise reduction effects of various sound protection facilities in the area of Seoul, Inch'on, Songchoo and Seoul- Busan Expressway from March to Octover, 1987. The results were as follows; 1. As compared with the environmental standards and the traffic noise level in heavy noise areas, traffic noise levels observed were shown in higher than environmental standards. The noise levels in Seoul were determined at 12.8-18.2 dB(A) in daytime and 19.0-26.9 dB (A) in nighttime. And incase of inch'on, it were 6.7-9.6 dB(A) in daytime, 7.9-18.9 dB(A) in nighttime, respectively. 2. The environmental noise level observed in the backside of protection facilities, such as apartment, soundproof barrier and houses, which were constructed in paralled to the road was lower about 3-5 dB(A) than perpendicular to theroad. Noise recuction effect of upper stairs in apartment was higher than lower stairs. 3. The predicted noise level obtained from the equation $({\triangle}L\;=\; -10\;log\;(^{I'1}/Ii)\;was\;\pm\;1dB$ (A) and the correlation coefficient (r) was 0.923. 4. The noise reduction effect in backside of apartment was measured at on sites and predicted by total noise loss equation. The predicted noise level was 60.9 dB(A) and the measured level was 60.6 dB(A), respectively. 5. The narrow width landscape less than 10m width was almost no effect for the protection of traffic noise. According to the synthesis of the above results, the noise level of the road was exceeding mostly the environmental standard in the heavy traffic areas. The counterplan should be set as well. The insulation of noise protection facilities were effective by the location with near distance from the road edge. The reduction effect of double window in apartment was represented so much. The prediction model could be applied to estimate the noise levels in the roadside as well as the effectiveness for the noise protection facilities.

  • PDF

Comparison between Indoor Noise Level and Subjective Response for Transportation Noise - Focusing on the Aircraft, Road traffic and Railway Noise (교통소음으로 인한 실내소음레벨과 주관반응 분석 - 항공기, 도로교통 및 철도소음을 중심으로)

  • Park, Hyeon-Ku;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.437-447
    • /
    • 2007
  • A series of research to seek for the relationship between subjective responses and noise level for transportation noise have been proceeded, and their results showed similar for some cases and different for some other cases as well, which is considered due to the various conditions such as the way of survey, different scale applied, and country etc. This study aimed to analyze the relationship between sound level and subjective response for the different kinds of transportation noise. The noises recorded in real situation were played to thirty subjects with fourty nine adjectives. The percentage of people annoyed(% PA) and the percentage of people highly annoyed(% HA) were calculated from the subjective results and compared how many percent of people are annoyed and highly annoyed for the same sound level. As a result of calculating the average, the aircraft noise was highest and the white noise lowest. The relationship between window TL and average point was well correlated except the aircraft noise which was scattered because of high sound level at specific frequency and low TL at corresponding frequency. This means that appropriate rating method for airborne sound transmission should be sought for to evaluate outdoor noise which has different frequency characteristics. The Boltzmann equation for % PA and % HA was applied to predict the sound level corresponding to the percentage. It is concluded that the aircraft noise and road traffic noise have almost same response and the railway noise was same with white noise, used for the reference noise, annoyed lower than other noises about by 3 dB.